Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Asian Biomed (Res Rev News) ; 18(2): 69-80, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38708330

RESUMO

Background: The triple-negative breast cancer (TNBC) subtype, characterized by loss of HER2, estrogen, and progesterone receptors, displays aggressive phenotype and poor prognosis compared to other BC subtypes. Since the TNBC cells are devoid of receptors, endocrine therapy is an ineffective option for TNBC patients, necessitating canonical chemotherapy strategies to treat TNBC. It is crucial to use alternative and natural agents to support chemotherapy in TNBC. Objectives: To clarify the molecular mechanism of the tumorigenic effects of gambogic acid (GA) on TNBC cells with different epithelial character since GA has a wide spectrum of anticancer activity for most cancer types. Methods: We determined the cytotoxic dose of GA incubation of TNBC cells (MDA-MB-231 and BT-20 cells) for 24 h. We performed the MTT test and toluidine blue (TB) staining protocol for TNBC cells. We analyzed E-cadherin, N-cadherin, Bax, and neuroserpin mRNAs in both cells by qPCR. We evaluated apoptosis using DAPI staining and assessed the ROS using the 2',7'-dichlorofluorescin diacetate (DCFH-DA) method. Results: We determined the IC50 concentrations of GA in MDA-MB-231 and BT-20 cells to be 315.8 nM and 441.8 nM, respectively. TB staining showed that BT-20 cells survive at excessive cytotoxic doses of GA, while most of the MDA-MB-231 cells were killed. Also, we found that BT-20 cells are more resistant to GA-induced apoptosis and oxidative stress than the MDA-MB-231 cells. qPCR results showed that GA upregulated neuroserpin, an oxidative stress-relieving factor in the BT-20 cells, but not in the MDA-MB-231 cells. Conclusions: The elevated level of neuroserpin could be a predictive marker to determine the development of resistance to chemotherapeutic agents.

2.
Cells ; 11(2)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35053341

RESUMO

The importance of sapienic acid (6c-16:1), a monounsaturated fatty acid of the n-10 family formed from palmitic acid by delta-6 desaturase, and of its metabolism to 8c-18:1 and sebaleic acid (5c,8c-18:2) has been recently assessed in cancer. Data are lacking on the association between signaling cascades and exposure to sapienic acid comparing cell lines of the same cancer type. We used 50 µM sapienic acid supplementation, a non-toxic concentration, to cultivate MCF-7 and 2 triple-negative breast cancer cells (TNBC), MDA-MB-231 and BT-20. We followed up for three hours regarding membrane fatty acid remodeling by fatty acid-based membrane lipidome analysis and expression/phosphorylation of EGFR (epithelial growth factor receptor), mTOR (mammalian target of rapamycin) and AKT (protein kinase B) by Western blotting as an oncogenic signaling cascade. Results evidenced consistent differences among the three cell lines in the metabolism of n-10 fatty acids and signaling. Here, a new scenario is proposed for the role of sapienic acid: one based on changes in membrane composition and properties, and the other based on changes in expression/activation of growth factors and signaling cascades. This knowledge can indicate additional players and synergies in breast cancer cell metabolism, inspiring translational applications of tailored membrane lipid strategies to assist pharmacological interventions.


Assuntos
Membrana Celular/metabolismo , Ácidos Palmíticos/metabolismo , Proteínas/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Ácidos Graxos/metabolismo , Humanos , Ácidos Palmíticos/química , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo
3.
J Plast Surg Hand Surg ; 56(3): 145-150, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34323644

RESUMO

BACKGROUND: Near-infrared spectroscopy (NIRS) is widely used to assess flap perfusions by measuring tissue oxygen saturation (StO2). However, the StO2 level for the onset of perfusion failure is still a controversial issue. AIM: This study proposes a new threshold of StO2 level for detecting the onset of perfusion failure as early as possible to increase flap salvage rates. METHODS: Twenty patients undergoing flap surgery were included in this study - 13 flaps were implemented to cover defects that occurred due to trauma and 7 flaps to hide imperfections that occurred after cancer treatment. Thirteen flaps were in the lower extremity, six in the mandible, and one in the breast. NIRS was used to measure StO2 in 240 flap regions of the 20 patients to determine flap viability using descriptive statistics. RESULTS: The mean StO2 values from healthy flap and control regions were obtained as 81.6% ± 0.36 and 82% ± 0.18, respectively. The lowest StO2 value of 77.2% was defined as the onset of a vascular complication at a probability of 99.74% by subtracting three times the standard deviation from the mean StO2 of healthy flaps. Vascular complications were observed from 21 regions in the four flaps with StO2 values lower than 77.2%, but only one was lost. CONCLUSION: The threshold value for the onset of perfusion failure was a 5% decrease from the expected value, much lower than previously described thresholds that may facilitate the detection of perfusion failure in the early stage and increase salvage rates in flap revisions.


Assuntos
Consumo de Oxigênio , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Extremidade Inferior , Oxigênio , Complicações Pós-Operatórias , Espectroscopia de Luz Próxima ao Infravermelho/métodos
4.
Sci Rep ; 11(1): 13027, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158544

RESUMO

Some experimental and clinical studies have been conducted for the usage of chemotherapeutic drugs encapsulated into nanoparticles (NPs). However, no study has been conducted so far on the co-encapsulation of doxorubicin (Dox) and epoxomicin (Epo) into NPs as biocompatible drug delivery carriers. Therefore, we investigated if co-encapsulation of doxorubicin (Dox) and/or epoxomicin (Epo) into NPs enhance their anticancer efficiency and prevent drug resistance and toxicity to normal cells. We synthesized Dox and/or Epo loaded poly (lactic-co-glycolic acid) (PLGA) NPs using a multiple emulsion solvent evaporation technique and characterized them in terms of their particle size and stability, surface, molecular, thermal, encapsulation efficiency and in vitro release properties. We studied the effects of drug encapsulated NPs on cellular accumulation, intracellular drug levels, oxidative stress status, cellular viability, drug resistance, 20S proteasome activity, cytosolic Nuclear Factor Kappa B (NF-κB-p65), and apoptosis in breast cancer and normal cells. Our results proved that the nanoparticles we synthesized were thermally stable possessing higher encapsulation efficiency and particle stability. Thermal, morphological and molecular analyses demonstrated the presence of Dox and/or Epo within NPs, indicating that they were successfully loaded. Cell line assays proved that Dox and Epo loaded NPs were less cytotoxic to single-layer normal HUVECs than free Dox and Epo, suggesting that the NPs would be biocompatible drug delivery carriers. The apoptotic index of free Dox and Epo increased 50% through their encapsulation into NPs, proving combination strategy to enhance apoptosis in breast cancer cells. Our results demonstrated that the co-encapsulation of Dox and Epo within NPs would be a promising treatment strategy to overcome multidrug resistance and toxicity to normal tissues that can be studied in further in vivo and clinical studies in breast cancer.


Assuntos
Apoptose , Materiais Biocompatíveis/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Neoplasias/patologia , Apoptose/efeitos dos fármacos , Varredura Diferencial de Calorimetria , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Endocitose/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Concentração Inibidora 50 , Células MCF-7 , Modelos Biológicos , NF-kappa B/metabolismo , Nanopartículas/ultraestrutura , Tamanho da Partícula , Complexo de Endopeptidases do Proteassoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Temperatura
5.
Int J Clin Pract ; 75(7): e14241, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33891773

RESUMO

BACKGROUND: Multiple sclerosis (MS) is a neuroinflammatory disease and inflammation and oxidative stress play important roles in its pathology. Thiol/disulphide homeostasis (TDH) is a special oxidative stress biomarker that has been found to be affected in several disorders including MS. There is no study demonstrating the effects of attack status of the relapsing-remitting multiple sclerosis (RRMS) patients on TDH levels. Our aim was to determine TDH levels in three different periods of RRMS patients and healthy individuals. METHODS: The study was carried out in 29 patients with RRMS without a prior attack in the last twelve months (MS Control), 21 RRMS patients having a clinical acute attack within the last week (MS relapse), 12 of 21 MS relapse patients one month after the onset of attack and following 1000 mg methylprednisolone for 7 days (MS Remission) and 30 age- and sex-matched healthy individuals. TDH status was determined using an automated spectrophotometric analysis method. TDH levels in all patient groups and control subjects were compared with each other. RESULTS: The lowest native thiol, total thiol levels and native thiol/total thiol ratio were found in the MS relapse patients in comparison to the MS control, MS remission groups and healthy controls. In contrast, disulphide levels, disulphide/native thiol and disulphide/total thiol ratios were highest in the MS relapse group compared to the other patient groups and healthy subjects. CONCLUSION: Our findings indicate that increased oxidative stress in RRMS patients is reflected with decreased native and total thiol and increased disulphide levels. Since the formation of disulphide bonds is reversible, the progression of RRMS involving abnormal TDH may be controlled, converting disulphides to thiols. So, we suggest determining the dynamic TDH status as a novel and special biomarker in the diagnosis and prognosis of the RRMS patients.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Dissulfetos , Homeostase , Humanos , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Estresse Oxidativo , Compostos de Sulfidrila
6.
Clin Chem Lab Med ; 59(7): 1257-1265, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33675215

RESUMO

OBJECTIVES: Restless legs syndrome (RLS) is a common neurological condition. Oxidative stress plays an important role in its pathogenesis. Thiol-disulphide homeostasis (TDH) is a new biomarker of oxidative stress. We studied plasma TDH to determine whether TDH could be used as a new biomarker for RLS and evaluated correlations between TDH and various disease severity rating scales. METHODS: A total of 25 RLS patients and 25 healthy controls were included into the study. TDH status was determined using an automated spectrophotometric analysis method and correlations were analyzed between the TDH status and various disease rating scales in the RLS patients. RESULTS: Plasma total (401±27 µmol/L) and native thiol (354±30 µmol/L) levels were significantly lower, but disulphide level (24±6 µmol/L) was significantly (<0.0001) higher in the RLS patients compared to the controls (455±36, 424±37, 15±5 µmol/L, respectively). The disulphide/native thiol and disulphide/total thiol ratios increased, in contrast, native thiol/total thiol ratio decreased significantly in the RLS patients compared to the healthy controls (<0.0001). The disulphide levels correlated positively with age and various rating scores of the RLS patients. International Restless Legs Syndrome Study Group (IRLSSG) rating score and age correlated negatively with the total and native thiol levels. CONCLUSIONS: Our findings indicate increased oxidative stress in the RLS patients reflected by decreased native and total thiol, and increased disulphide levels and positive correlations between the disulphide levels and various rating scores. We suggest dynamic TDH status to be used as a novel biomarker for the diagnosis and follow-up of the RLS patients.


Assuntos
Dissulfetos , Síndrome das Pernas Inquietas , Biomarcadores , Estudos de Casos e Controles , Homeostase , Humanos , Estresse Oxidativo , Compostos de Sulfidrila
7.
J Clin Neurosci ; 78: 143-146, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32345514

RESUMO

We compared copeptin levels in relapsing-remitting multiple sclerosis (RRMS) patients with controls and investigated how plasma copeptin levels were changed with the disease period. Thirty patients with RRMS without a prior attack in the last twelve months, and 19 RRMS patients with a clinical acute attack and 30 healthy individuals were included into the study. Copeptin levels were significantly higher in all RRMS patient groups than healthy controls. Plasma copeptin levels were higher in patients in remission period compared with relapse period of 19 RRMS patients with an acute attack. We consider copeptin can be used as a potential biomarker for RRMS.


Assuntos
Biomarcadores/sangue , Glicopeptídeos/sangue , Esclerose Múltipla Recidivante-Remitente/sangue , Adulto , Feminino , Humanos , Pessoa de Meia-Idade
8.
Can J Physiol Pharmacol ; 98(3): 131-138, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31545905

RESUMO

Breast cancer is a worldwide commonly found malignancy in women and effective treatment is regarded as a huge clinical challenge even in the presence of several treatment options. Extensive literature is available demonstrating polyphenols as phytopharmaceutical anticancer agents. Among the polyphenols, quercetin and curcumin have been reported to have a strong potential against breast cancer. However, so far, no comprehensive study has been performed to demonstrate the anticarcinogenic effects of curcumin, quercetin, and their combinations with somatostatin on the fatty acid profile of breast cancer cell membranes. We used MCF-7 and MDA-MB231 breast cancer cells incubated with curcumin and quercetin for 24 h, in the absence and presence of somatostatin, at their EC50 concentrations to evaluate membrane fatty acid based functional lipidomics together with the followup of EGFR and MAPK signaling pathways. The two cell lines gave different membrane free fatty acid reorganization. In MCF-7 cells, the following changes were observed: an increase of ω6 linoleic acid in the cells incubated with somatostatin + quercetin and quercetin and a decrease of ω3 acids in the cells incubated with somatostatin + curcumin compared to somatostatin and significant increases of monounsaturated fatty acid (MUFA), mono-trans arachidonic acid levels and docosapentaenoic acid for the cells incubated with somatostatin + quercetin compared to the control cells. In MDA-MB231 cells, incubations with curcumin, quercetin, and somatostatin + quercetin induced the most significant membrane remodeling with the increase of stearic acid, diminution of ω6 linoleic, arachidonic acids, and ω3 (docosapentaenoic and docosahexaenoic acids). Distinct signaling pathway changes were found for these cell lines. In MCF-7 cells, separate or combined incubations with somatostatin and quercetin, significantly decreased EGFR and incubation with curcumin decreased MAPK signaling. In MDA-MB231 cells, incubation with curcumin decreased AKT1 and p-AKT1 (Thr308) levels. Incubation with curcumin and quercetin decreased the EGFR levels. Our results showed that cytostatic and antioxidant treatments can be combined to induce membrane fatty acid changes, including lipid isomerization as specific free radical driven process, and to influence signaling pathways. This study aimed to contribute to the literature on these antioxidants in the treatment of breast cancer to clarify the effects and mechanisms in combination with somatostatin.


Assuntos
Neoplasias da Mama/metabolismo , Membrana Celular/metabolismo , Curcumina/farmacologia , Ácidos Graxos/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Quercetina/farmacologia , Somatostatina/farmacologia , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Membrana Celular/efeitos dos fármacos , Feminino , Hormônios/farmacologia , Humanos , Células Tumorais Cultivadas
9.
Anticancer Agents Med Chem ; 19(15): 1899-1909, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31566138

RESUMO

BACKGROUND: Vitamin C (Vit C) is an important physiological antioxidant with growing applications in cancer. Somatostatin (SST) is a natural peptide with growth inhibitory effect in several mammary cancer models. OBJECTIVE: The combined effects of SST and Vit C supplementation have never been studied in breast cancer cells so far. METHODS: We used MCF-7 and MDA-MB231 breast cancer cells incubated with SST for 24h, in the absence and presence of Vit C, at their EC50 concentrations, to evaluate membrane fatty acid-profiles together with the follow-up of EGFR and MAPK signaling pathways. RESULTS: The two cell lines gave different membrane reorganization: in MCF-7 cells, decrease of omega-6 linoleic acid and increase of omega-3 fatty acids (Fas) occurred after SST and SST+Vit C incubations, the latter also showing significant increases in MUFA, docosapentaenoic acid and mono-trans arachidonic acid levels. In MDA-MB231 cells, SST+Vit C incubation induced significant membrane remodeling with an increase of stearic acid and mono-trans-linoleic acid isomer, diminution of omega-6 linoleic, arachidonic acid and omega-3 (docosapentaenoic and docosadienoic acids). Distinct signaling pathways in these cell lines were studied: in MCF-7 cells, incubations with SST and Vit C, alone or in combination significantly decreased EGFR and MAPK signaling, whereas in MDA-MB231 cells, SST and Vit C incubations, alone or combined, decreased p- P44/42 MAPK levels, and increased EGFR levels. CONCLUSION: Our results showed that SST and Vit C can be combined to induce membrane fatty acid changes, including lipid isomerization through a specific free radical-driven process, influencing signaling pathways.


Assuntos
Ácido Ascórbico/metabolismo , Neoplasias da Mama/metabolismo , Membrana Celular/metabolismo , Ácidos Graxos/metabolismo , Somatostatina/metabolismo , Ácidos Araquidônicos/metabolismo , Extratos Celulares/química , Linhagem Celular Tumoral , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Insaturados/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Lipídeos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosfolipídeos/química , Transdução de Sinais , Ácidos Esteáricos/metabolismo
10.
Anticancer Agents Med Chem ; 18(7): 985-992, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29173185

RESUMO

This systematic review aims to elucidate the role of melatonin (N-acetyl-5-metoxy-tryptamine) (MLT) in the prevention and treatment of cancer. MLT is a pineal gland secretory product, an evolutionarily highly conserved molecule; it is also an antioxidant and an impressive protector of mitochondrial bioenergetic activity. MLT is characterized by an ample range of activities, modulating the physiology and molecular biology of the cell. Its physiological functions relate principally to the interaction of G Protein-Coupled MT1 and MT2 trans-membrane receptors (GPCRs), a family of guanidine triphosphate binding proteins. MLT has been demonstrated to suppress the growth of various tumours both, in vivo and in vitro. In this review, we analyze in depth, the antioxidant activity of melatonin, aiming to illustrate the cancer treatment potential of the molecule, by limiting or reversing the changes occurring during cancer development and growth.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Melatonina/farmacologia , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/uso terapêutico , Antioxidantes/uso terapêutico , Humanos , Melatonina/uso terapêutico , Neoplasias/metabolismo , Neoplasias/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Receptores de Melatonina/metabolismo
11.
Curr Top Med Chem ; 17(8): 907-918, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27697050

RESUMO

Cancer is a multifactorial disease including interactions of complex genetic and environmental factors. Clinical efficacy of anticancer chemotherapies is hampered by various factors including multidrug resistance (MDR). There is a strong need to discover more potent novel cancer drugs to kill cancer cells selectively. The recent new strategy for cancer treatment involves the design and synthesis of hybrid compounds as multitargeted anticancer agents. In this review, we focus on studies using hybrid compounds which were designed and synthesized from two or more different bioactive moieties conjugating them into a single hybrid drug. Hybrid compounds having more than a single target have been considered as more efficient and potent anticancer agents, since it is almost impossible to destroy cancer cells with a single target. Hybrid compounds overcome many disadvantages of single cancer drugs such as low solubility, adverse effects, and multi drug resistance. We have compiled the data of recent studies using the new hybrid anticancer drugs in cancer treatment. Thus, the design, synthesis and clinical trials of new hybrid compounds should be continued and supported in future. Results of recent studies have proved that they have a great potential to be used as novel anticancer drugs.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Humanos , Estrutura Molecular , Neoplasias/patologia
12.
Free Radic Res ; 50(sup1): S79-S84, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27620702

RESUMO

Thiol groups are important anti-oxidants and essential molecules protecting organism against the harmful effects of reactive oxygen species (ROS). The aim of our study is to evaluate thiol-disulphide homeostasis with a novel recent automated method in patients with localized prostate cancer (PC) before and six months after radical prostatectomy (RP). 18 patients with PC and 17 healthy control subjects were enrolled into the study. Blood samples were collected from the controls subjects and patients before and six months after RP. Thiol-disulphide homeostasis was determined using a recently developed novel method. Prostate-specific antigen (PSA), albumin, total protein, total thiol, native thiol, disulphide and total antioxidant status (TAS) were measured and compared between the groups. Native thiol, total thiol and TAS levels were significantly higher in the control group than the patients before RP (p < .001). There was a non-significant increase in the native thiol, total thiol and TAS levels in the patients six months after RP in comparison to the levels before RP (p values .3, .3 and .09, respectively). We found a significant negative correlation between PSA and thiol levels. Our study demonstrated that the decreased thiol and TAS levels weakened anti-oxidant defence mechanism in the patients with PC as indicated. Increased oxidative stress in prostate cancer patients may cause metabolic disturbance and have a role in the aetiopathogenesis of prostate cancer.


Assuntos
Dissulfetos/metabolismo , Prostatectomia/métodos , Neoplasias da Próstata/metabolismo , Homeostase , Humanos , Masculino , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia
13.
Free Radic Biol Med ; 72: 113-23, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24742815

RESUMO

Endoplasmic reticulum (ER) stress and excessive nitric oxide production via the induction of inducible nitric oxide synthase (NOS2) have been implicated in the pathogenesis of ocular diseases characterized by retinal degeneration. Previous studies have revealed the sphingomyelinase/ceramide pathway in the regulation of NOS2 induction. Thus, the objective of this study was to determine the activity of the sphingomyelinase/ceramide pathway, assess nitric oxide production, and examine apoptosis in human retinal pigment epithelial (RPE) cells undergoing ER stress. Sphingomyelinase (SMase) activity; nuclear factor κB (NF-κB) activation; NOS2, nitrite/nitrate, and nitrotyrosine levels; and apoptosis were determined in cultured human RPE cell lines subjected to ER stress via exposure to tunicamycin. Induction of ER stress was confirmed by increased intracellular levels of ER stress markers including phosphorylated PKR-like ER kinase, C/EBP-homologous protein, and 78-kDa glucose-regulated protein. ER stress increased nuclear translocation of NF-κB, NOS2 expression, nitrite/nitrate levels, and nitrotyrosine formation and caused apoptosis in RPE cell lines. Inhibition of neutral SMase (N-SMase) activity via GW 4869 treatment caused a significant reduction in nuclear translocation of NF-κB, NOS2 expression, nitrite/nitrate levels, nitrotyrosine formation, and apoptosis in ER-stressed RPE cells. In conclusion, N-SMase inhibition reduced nitrative stress and apoptosis in RPE cells undergoing ER stress. Obtained data suggest that NOS2 can be regulated by N-SMase in RPE cells experiencing ER stress.


Assuntos
Apoptose/fisiologia , Estresse do Retículo Endoplasmático/fisiologia , Óxido Nítrico Sintase Tipo II/metabolismo , Epitélio Pigmentado da Retina/enzimologia , Esfingomielina Fosfodiesterase/metabolismo , Western Blotting , Linhagem Celular , Citometria de Fluxo , Imunofluorescência , Humanos , Marcação In Situ das Extremidades Cortadas , Epitélio Pigmentado da Retina/citologia
14.
J Diabetes Res ; 2013: 860190, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23691522

RESUMO

This study aimed to investigate LDL subfraction distribution as well as serum cholesteryl ester transfer protein (CETP), lecithin-cholesterol acyltransferase (LCAT), and paraoxonase (PON1) activity in streptozotocin-induced diabetic guinea pigs. Materials/Methods. Guinea pigs were given a single intraperitoneal (ip) injection of streptozotocin (STZ) and animals having fasting blood glucose levels greater than 200 mg/dl, were considered diabetic. Protein levels of LCAT and CETP were determined via ELISA. Paraoxonase activity was measured kinetically by the formation of phenol while LDL subfraction analysis was done by disc polyacrylamide gel electrophoresis. Results. Plasma glucose and high-density lipoprotein (HDL) cholesterol were significantly increased while total cholesterol and LDL cholesterol were significantly decreased in diabetic guinea pigs compared to controls. LDL subfraction analysis revealed a significant decrease in nonatherogenic LDL-2 subfraction and a significant increase in atherogenic LDL-4 subfraction in diabetic guinea pigs compared to controls. Plasma CETP and PON1 levels were significantly decreased while LCAT showed no significant difference in diabetic guinea pigs compared to controls. Conclusion. Decreased non-atherogenic LDL-1, LDL-2 subfractions, increased small dense LDL-4 subfraction, and decreased PON1 activity, reveals formation of an atherogenic risk in diabetic guinea pigs. Decrease in CETP levels supports the observed increase in HDL cholesterol levels in diabetic guinea pigs.

15.
Lipids Health Dis ; 12: 54, 2013 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-23617853

RESUMO

BACKGROUND: Insulin treatment can lead to good glycemic control and result in improvement of lipid parameters in type 2 diabetic patients. This study was designed to evaluate the effect of insulin analog initiation therapy on low-density lipoprotein (LDL)/ high-density lipoprotein (HDL) sub-fractions and HDL associated enzymes in type 2 diabetic patients during early phase. METHODS: Twenty four type 2 diabetic patients with glycosylated hemoglobin (HbA1c) levels above 10% despite ongoing combination therapy with sulphonylurea and metformin were selected. Former treatment regimen was continued for the first day followed by substitution of sulphonylurea therapy with different insulin analogs (0.4 U/kg/day) plus metformin. Glycemic profiles were determined over 72 hours by continuous glucose monitoring system (CGMS) and blood samples were obtained from all patients at 24 and 72 hours. Plasma levels of cholesteryl ester transfer protein (CETP), lecithin-cholesterol acyltransferase (LCAT), apolipoprotein B (apoB) and apolipoprotein A-1 (apoA-I) were determined by enzyme-linked immunosorbent assay (ELISA). Measurement of CETP and LCAT activity was performed via fluorometric analysis. Paraoxonase (PON1) enzyme activity was assessed from the rate of enzymatic hydrolysis of phenyl acetate to phenol formation. LDL and HDL subfraction analysis was done by continuous disc polyacrylamide gel electrophoresis. RESULTS: Mean blood glucose, total cholesterol (TC), triglyceride (TG) and very low-density lipoprotein cholesterol (VLDL-C) levels were significantly decreased while HDL-C levels were significantly increased after insulin treatment. Although LDL-C levels were not significantly different before and after insulin initiation therapy a significant increase in LDL-1 subgroup and a significant reduction in atherogenic LDL-3 and LDL-4 subgroups were observed. Insulin analog initiation therapy caused a significant increase in HDL-large, HDL- intermediate and a significant reduction in HDL-small subfractions. CETP protein level and activity was significantly increased while apoB levels were significantly decreased following insulin analog initiation therapy. No significant difference was found in LCAT mass, LCAT activity, apoA-I and PON-1 arylesterase levels following insulin initiation therapy. CONCLUSION: These findings indicate that insulin analog initiation therapy activates lipid metabolism via up-regulating CETP and shows anti-atherogenic effects by increasing HDL-large and decreasing LDL-3 and LDL-4 subfractions in a short time period.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Insulina/administração & dosagem , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/metabolismo , Adulto , Apolipoproteína A-I/sangue , Apolipoproteínas B/sangue , Glicemia/efeitos dos fármacos , Proteínas de Transferência de Ésteres de Colesterol/sangue , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Feminino , Hemoglobinas Glicadas/efeitos dos fármacos , Humanos , Insulina/análogos & derivados , Masculino , Metformina/administração & dosagem , Pessoa de Meia-Idade , Fosfatidilcolina-Esterol O-Aciltransferase/sangue
16.
Redox Rep ; 18(2): 76-87, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23485101

RESUMO

Glaucoma is the leading cause of irreversible blindness in industrialized countries and comprises a group of diseases characterized by progressive optic nerve degeneration. Glaucoma is commonly associated with elevated intraocular pressure due to impaired outflow of aqueous humor resulting from abnormalities within the drainage system of the anterior chamber angle (open-angle glaucoma) or impaired access of aqueous humor to the drainage system (angle-closure glaucoma). Oxidative injury and altered antioxidant defense mechanisms in glaucoma appear to play a role in the pathophysiology of glaucomatous neurodegeneration that is characterized by death of retinal ganglion cells. Oxidative protein modifications occurring in glaucoma serve as immunostimulatory signals and alter neurosupportive and immunoregulatory functions of glial cells. Initiation of the apoptotic cascade observed in glaucomatous retinopathy can involve oxidant mechanisms and different agents have been shown to be neuroprotective. This review focuses on the molecular mechanisms of oxidant injury and summarizes studies that have investigated novel free radical scavengers in the treatment of glaucomatous neurodegeneration.


Assuntos
Sequestradores de Radicais Livres/farmacologia , Glaucoma/tratamento farmacológico , Glaucoma/metabolismo , Estresse Oxidativo , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , DNA/metabolismo , Sequestradores de Radicais Livres/uso terapêutico , Ginkgo biloba , Glaucoma/imunologia , Glaucoma/fisiopatologia , Humanos , Peroxidação de Lipídeos , Estresse Oxidativo/imunologia , Carbonilação Proteica , Resveratrol , Estilbenos/farmacologia , Estilbenos/uso terapêutico , Sulfonamidas/farmacologia , Tiofenos/farmacologia
17.
J Cell Biochem ; 114(7): 1685-94, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23386420

RESUMO

Antioxidants may prevent apoptosis of cancer cells via inhibiting reactive oxygen species (ROS). However, to date no study has been carried out to elucidate the effects of strong antioxidant N-acetylcysteine (NAC) on Bleomycin induced apoptosis in human testicular cancer (NTERA-2, NT2) cells. For this reason, we studied the effects of Bleomycin and NAC alone and in combination on apoptotic signaling pathways in NT2 cell line. We determined the cytotoxic effect of bleomycin on NT2 cells and measured apoptosis markers such as Caspase-3, -8, -9 activities and Bcl-2, Bax, Cyt-c, Annexin V-FTIC and PI levels in NT2 cells incubated with different agents for 24 h. Early apoptosis was determined using FACS assay. We found half of the lethal dose (LD50) of Bleomycin on NT2 cell viability as 400, 100, and 20 µg/ml after incubations for 24, 48, and 72 h, respectively. Incubation with bleomycin (LD50 ) and H2O2 for 24 h increased Caspase-3, -8, -9 activities, Cyt-c and Bax levels and decreased Bcl-2 levels. The concurrent incubation of NT2 cells with bleomycin/H2O2 and NAC (5 mM) for 24 h abolished bleomycin/H2O2-dependent increases in Caspase-3, -8, -9 activities, Bax and Cyt-c levels and bleomycin/H2O2-dependent decrease in Bcl-2 level. Our results indicate that bleomycin/H2O2 induce apoptosis in NT2 cells by activating mitochondrial pathway of apoptosis, while NAC diminishes bleomycin/H2O2 induced apoptosis. We conclude that NAC has antagonistic effects on Bleomycin-induced apoptosis in NT2 cells and causes resistance to apoptosis which is not a desired effect in eliminating cancer cells.


Assuntos
Acetilcisteína/farmacologia , Apoptose/efeitos dos fármacos , Bleomicina/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/farmacologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Neoplasias Testiculares/metabolismo
18.
J. physiol. biochem ; 68(4): 555-562, dic. 2012.
Artigo em Inglês | IBECS | ID: ibc-122303

RESUMO

Oxidative stress has been shown to induce apoptosis in cancer cells. Therefore, one might suspect that antioxidants may inhibit reactive oxygen species (ROS) and prevent apoptosis of cancer cells. No study has been carried out so far to elucidate the effects of N-acetylcysteine (NAC) on bleomycin-induced apoptosis in human testicular cancer (NCCIT) cells. We investigated the molecular mechanisms of apoptosis induced by bleomycin and the effect of NAC in NCCIT cells. We compared the effects of bleomycin on apoptosis with H2O2 which directly produces ROS. Strong antioxidant NAC was evaluated alone and in combination with bleomycin or H2O2 in germ cell tumor-derived NCCIT cell line (embryonal carcinoma, being the nonseminomatous stem cell component). We determined the cytotoxic effect of bleomycin and H2O2 on NCCIT cells and measured apoptosis markers such as caspase-3, caspase-8, and caspase-9 activities and Bcl-2, Bax, and cytochrome c (Cyt-c) levels in NCCIT cells incubated with bleomycin, H2O2, and/or NAC. We found half of the lethal dose (LD50) of bleomycin on NCCIT cell viability as 120 ìg/ml after incubation for 72 h. Incubation with bleomycin (LD50) induced increases in caspase-3, caspase-8, and caspase-9 activities and Cyt-c and Bax protein levels and a decrease in Bcl-2 level. Co-incubation of NCCIT cells with bleomycin and 10 mM NAC abolished bleomycin-induced increases in caspase-3 and caspase-9 activities, Bax, and Cyt-c levels and bleomycin-induced decrease in Bcl-2 level. Our results indicate that bleomycin induces apoptosis in NICCT cells and that NAC diminishes bleomycin-induced apoptosis via inhibiting the mitochondrial pathway. We conclude that NAC has negative effects on bleomycin-induced apoptosis in NICCT cells and causes resistance to apoptosis, which is not a desirable effect in the fight against cancer (AU)


Assuntos
Humanos , Masculino , Acetilcisteína/farmacocinética , Apoptose , Neoplasias Testiculares/tratamento farmacológico , Antioxidantes/farmacocinética , Bleomicina/farmacocinética , Neoplasias Embrionárias de Células Germinativas/tratamento farmacológico
19.
J Physiol Biochem ; 68(4): 555-62, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22562160

RESUMO

Oxidative stress has been shown to induce apoptosis in cancer cells. Therefore, one might suspect that antioxidants may inhibit reactive oxygen species (ROS) and prevent apoptosis of cancer cells. No study has been carried out so far to elucidate the effects of N-acetylcysteine (NAC) on bleomycin-induced apoptosis in human testicular cancer (NCCIT) cells. We investigated the molecular mechanisms of apoptosis induced by bleomycin and the effect of NAC in NCCIT cells. We compared the effects of bleomycin on apoptosis with H(2)O(2) which directly produces ROS. Strong antioxidant NAC was evaluated alone and in combination with bleomycin or H(2)O(2) in germ cell tumor-derived NCCIT cell line (embryonal carcinoma, being the nonseminomatous stem cell component). We determined the cytotoxic effect of bleomycin and H(2)O(2) on NCCIT cells and measured apoptosis markers such as caspase-3, caspase-8, and caspase-9 activities and Bcl-2, Bax, and cytochrome c (Cyt-c) levels in NCCIT cells incubated with bleomycin, H(2)O(2), and/or NAC. We found half of the lethal dose (LD(50)) of bleomycin on NCCIT cell viability as 120 µg/ml after incubation for 72 h. Incubation with bleomycin (LD(50)) induced increases in caspase-3, caspase-8, and caspase-9 activities and Cyt-c and Bax protein levels and a decrease in Bcl-2 level. Co-incubation of NCCIT cells with bleomycin and 10 mM NAC abolished bleomycin-induced increases in caspase-3 and caspase-9 activities, Bax, and Cyt-c levels and bleomycin-induced decrease in Bcl-2 level. Our results indicate that bleomycin induces apoptosis in NICCT cells and that NAC diminishes bleomycin-induced apoptosis via inhibiting the mitochondrial pathway. We conclude that NAC has negative effects on bleomycin-induced apoptosis in NICCT cells and causes resistance to apoptosis, which is not a desirable effect in the fight against cancer.


Assuntos
Acetilcisteína/farmacologia , Antibióticos Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Bleomicina/farmacologia , Caspases/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citocromos c/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Dose Letal Mediana , Masculino , Neoplasias Embrionárias de Células Germinativas , Oxidantes/farmacologia , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Neoplasias Testiculares , Proteína X Associada a bcl-2/metabolismo
20.
Mol Med Rep ; 5(6): 1481-6, 2012 06.
Artigo em Inglês | MEDLINE | ID: mdl-22469952

RESUMO

Testicular cancer is the most common cancer among young men of reproductive age. Bleomycin is a frequently used drug for the treatment of several malignancies and is part of the chemotherapy protocols used for testicular cancer; however, side-effects are common. Bleomycin causes an increase in oxidative stress which has been shown to induce apoptosis in cancer cells. Curcumin (diferuloylmethane), an active component of the spice turmeric, has been demonstrated to induce apoptosis in a number of malignancies. However, to date no study has been carried out to elucidate its anticancer activity and interaction with bleomycin in testicular cancer cells. In this study, we investigated and compared the effects of curcumin, bleomycin and hydrogen peroxide (H2O2) on apoptotic signaling pathways. Curcumin (20 µM), bleomycin (400 µg/ml) and H2O2 (400 µM) incubation for 24 h decreased the viability of NTera-2 cells, and increased caspase-3, -8 and -9 activities, Bax and cytoplasmic cytochrome c levels and decreased Bcl-2 levels. The concurrent use of curcumin with bleomycin induced caspase-3, -8 and -9 activities to a greater extent in NTera-2 cells than the use of each drug alone. Our observations suggest that the effects of curcumin and bleomycin on apoptotic signaling pathways are synergistic. Therefore, we propose to use curcumin together with bleomycin to decrease its therapeutic dose and, therefore, its side-effects.


Assuntos
Antineoplásicos/farmacologia , Bleomicina/farmacologia , Curcumina/farmacologia , Caspase 3/metabolismo , Caspase 8/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citocromos c/metabolismo , Sinergismo Farmacológico , Humanos , Peróxido de Hidrogênio/toxicidade , Masculino , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Neoplasias Testiculares/metabolismo , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...