Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chempluschem ; 89(5): e202300647, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38217401

RESUMO

Herein, we report the development of a macromolecular multifunctional imaging tool for biological investigations, which is comprised of an N-(2-hydroxypropyl)methacrylamide backbone, iridium-based luminescent probe, glutamate carboxypeptidase II (GCPII) targeting ligand, and biotin affinity tag. The iridium luminophore is a tris-cyclometalated complex based on [Ir(ppy)3] with one of its 2-phenylpyridine ligands functionalized to allow conjugation. Synthesized macromolecular probes differed in the structure of the polymer and content of the iridium complex. The applicability of the developed imaging tools has been tested in flow cytometry (FACS) based assay, laser confocal microscopy, and fluorescence lifetime imaging microscopy (FLIM). The FACS analysis has shown that the targeted iBodies containing the iridium luminophore exhibit selective labelling of GCPII expressing cells. This observation was also confirmed in the imaging experiments with laser confocal microscopy. The FLIM experiment has shown that the iBodies with the iridium label exhibit a lifetime greater than 100 ns, which distinguishes them from typically used systems labelled with organic fluorophores exhibiting short fluorescence lifetimes. The results of this investigation indicate that the system exhibits interesting properties, which supports the development of additional biological tools utilizing the key components (iridium complexes, iBody concept), primarily focusing on the longer lifetime of the iridium emitter.


Assuntos
Irídio , Microscopia Confocal , Polímeros , Irídio/química , Humanos , Polímeros/química , Corantes Fluorescentes/química , Microscopia de Fluorescência/métodos , Citometria de Fluxo , Imagem Óptica/métodos
2.
Macromol Biosci ; 24(2): e2300306, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37691533

RESUMO

Herein, an advanced bioconjugation technique to synthesize hybrid polymer-antibody nanoprobes tailored for fluorescent cell barcoding in flow cytometry-based immunophenotyping of leukocytes is applied. A novel approach of attachment combining two fluorescent dyes on the copolymer precursor and its conjugation to antibody is employed to synthesize barcoded nanoprobes of antibody polymer dyes allowing up to six nanoprobes to be resolved in two-dimensional cytometry analysis. The major advantage of these nanoprobes is the construct design in which the selected antibody is labeled with an advanced copolymer bearing two types of fluorophores in different molar ratios. The cells after antibody recognition and binding to the target antigen have a characteristic double fluorescence signal for each nanoprobe providing a unique position on the dot plot, thus allowing antibody-based barcoding of cellular samples in flow cytometry assays. This technique is valuable for cellular assays that require low intersample variability and is demonstrated by the live cell barcoding of clinical samples with B cell abnormalities. In total, the samples from six various donors were successfully barcoded using only two detection channels. This barcoding of clinical samples enables sample preparation and measurement in a single tube.


Assuntos
Anticorpos , Corantes Fluorescentes , Citometria de Fluxo/métodos , Corantes Fluorescentes/química , Imunofenotipagem , Polímeros
3.
J Control Release ; 325: 304-322, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32652110

RESUMO

In the past decades, nanosized drug delivery systems based on N-(2-hydroxypropyl)methacrylamide copolymers (pHPMA) have gained increasing attention in nanomedicine field due to their hydrophilicity, versatility, biocompatibility, non-toxicity, and non-immunogenicity. Indeed, pHPMA nanosystems with various controlled drug release capabilities inside targeted tissues or cells have been intensively studied. This paper summarizes recent advances in the design and application of pHPMA conjugates with specific antibodies or their fragments, focusing predominantly on the systems for the cancer therapy, particularly, the mechanisms of action of therapeutic antibodies, the approaches of their modification and subsequent attachment of pHPMA and their conjugates with diverse active moieties. Finally, we highlight the major biomedical applications of these antibody-polymer-drug conjugates and consider directions of possible development over the coming decade.


Assuntos
Sistemas de Liberação de Medicamentos , Metacrilatos , Nanomedicina , Polímeros
4.
Pharmaceutics ; 12(12)2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-33419291

RESUMO

Nanomedicines are a novel class of therapeutics that benefit from the nano dimensions of the drug carrier. These nanosystems are highly advantageous mainly within cancer treatment due to their enhanced tumor accumulation. Monolayer tumor cells frequently used in routine preclinical assessment of nanotherapeutics do not have a spatial structural architecture that allows the investigation of the penetration of nanomedicines to predict their behavior in real tumor tissue. Therefore, tumor spheroids from colon carcinoma C26 cells and glioblastoma U87-MG cells were used as 3D in vitro models to analyze the effect of the inner structure, hydrodynamic size, dispersity, and biodegradability of N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-based nanomedicines carrying anticancer drug pirarubicin (THP) on the penetration within spheroids. While almost identical penetration through spheroids of linear and star-like copolymers and also their conjugates with THP was observed, THP penetration after nanomedicines application was considerably deeper than for the free THP, thus proving the benefit of polymer carriers. The cytotoxicity of THP-polymer nanomedicines against tumor cell spheroids was almost identical as for the free THP, whereas the 2D cell cytotoxicity of these nanomedicines is usually lower. The nanomedicines thus proved the enhanced efficacy within the more realistic 3D tumor cell spheroid system.

5.
Pharmaceutics ; 11(11)2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31694350

RESUMO

Multidrug resistance (MDR) is often caused by the overexpression of efflux pumps, such as ABC transporters, in particular, P-glycoprotein (P-gp). Here, we investigate the di- and tri- block amphiphilic polymer systems based on polypropylene glycol (PPO) and copolymers of (N-(2-hydroxypropyl)methacrylamide) (PHPMA) as potential macromolecular inhibitors of P-gp, and concurrently, carriers of drugs, passively targeting solid tumors by the enhanced permeability and retention (EPR) effect. Interestingly, there were significant differences between the effects of di- and tri- block polymer-based micelles, with the former being significantly more thermodynamically stable and showing much higher P-gp inhibition ability. The presence of Boc-protected hydrazide groups or the Boc-deprotection method did not affect the physico-chemical or biological properties of the block copolymers. Moreover, diblock polymer micelles could be loaded with free PPO containing 5-40 wt % of free PPO, which showed increased P-gp inhibition in comparison to the unloaded micelles. Loaded polymer micelles containing more than 20 wt % free PPO showed a significant increase in toxicity; thus, loaded diblock polymer micelles containing 5-15 wt % free PPO are potential candidates for in vitro and in vivo application as potent MDR inhibitors and drug carriers.

6.
Mol Pharm ; 15(9): 3654-3663, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-29543465

RESUMO

Herein, the biodegradable micelle-forming amphiphilic N-(2-hydroxypropyl) methacrylamide (HPMA)-based polymer conjugates with the anticancer drug doxorubicin (Dox) designed for enhanced tumor accumulation were investigated, and the influence of their stability in the bloodstream on biodistribution, namely, tumor uptake, and in vivo antitumor efficacy were evaluated in detail. Dox was attached to the polymer carrier by a hydrazone bond enabling pH-controlled drug release. While the polymer-drug conjugates were stable in a buffer at pH 7.4 (mimicking bloodstream environment), Dox was released in a buffer under mild acidic conditions modeling the tumor microenvironment or cells. The amphiphilic polymer carriers differed in the structure of hydrophobic cholesterol derivative moieties bound to the HPMA copolymers via a hydrolyzable hydrazone bond, exhibiting different rates of micellar structure disintegration at various pH values. Considerable dependence of the studied polymer-drug conjugate biodistribution on the stability of the micellar structure was observed in neutral, bloodstream-mimicking, environment, showing that a faster rate of the micelle disintegration in pH 7.4 increased the conjugate blood clearance, decreased tumor accumulation, and significantly reduced the tumor:blood and tumor:muscle ratios. Similarly, the final therapeutic outcome was strongly affected by the stability of the micellar structure because the most stable micellar conjugate showed an almost similar therapeutic outcome as the water-soluble, nondegradable, high-molecular-weight starlike HPMA copolymer-Dox conjugate, which was highly efficient in the treatment of solid tumors in mice. Based on the results, we conclude that the bloodstream stability of micellar polymer-anticancer drug conjugates, in addition to their low side toxicity, is a crucial parameter for their efficient solid tumor accumulation and high in vivo antitumor activity.


Assuntos
Doxorrubicina/química , Doxorrubicina/farmacocinética , Polímeros/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Doxorrubicina/uso terapêutico , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Feminino , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Linfoma/sangue , Linfoma/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Micelas
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 193: 185-191, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29241053

RESUMO

Hypericin (Hyp) is a hydrophobic pigment found in plants of the genus Hypericum which exhibits low levels of solubility in water. This work shows that the solubility of Hyp can be significantly increased through the addition of cromolyn disodium salt (DSCG). Performed studies using UV-VIS absorption and fluorescence spectroscopies demonstrate that Hyp remains in a predominantly biologically photodynamic active monomeric form in the presence of DSCG at concentrations ranging from 4.6×10-3 to 1.2×10-1mol·L-1. The low association constant between Hyp and DSCG (Ka=71.7±2M-1), and the polarity value of 0.3 determined for Hyp in a DSCG-water solution, lead to a suggestion that the monomerization of Hyp in aqueous solution can be explained as a result of the hydrotropic effect of DSCG. This hydrotropic effect is most likely a result of interactions between two relative rigid aromatic rings of DSCG and a delocalized charge on the surface of the Hyp molecule. The triplet-triplet (T-T) electronic transition observed in is Hyp in the presence of DSCG suggests a possible production of reactive oxygen species once Hyp is irradiated with visible light in a DSCG aqueous solution.


Assuntos
Cromolina Sódica/química , Substâncias Macromoleculares/química , Perileno/análogos & derivados , Radiossensibilizantes/química , Antracenos , Perileno/química , Solubilidade , Espectrometria de Fluorescência
8.
J Inorg Biochem ; 168: 1-12, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27997856

RESUMO

This study introduces a pair of newly synthesized silver complexes, [Ag2(HGly)2]n(NO3)2n (1) and [Ag(Nam)2]NO3·H2O (2) (Gly - glycine, Nam - nicotinamide), that were prepared and characterized by relevant methods in solid state (elemental, spectral, thermal and structural analysis) and their stability in solution was verified by 1H NMR measurements. Moreover, suitable reaction conditions were observed by potentiometry depending on pH in case of binary system Ag-Gly. X-ray analysis confirmed argentophilic interactions in complex 1 with an Ag1-Ag2 distance of 2.8018(6) Å. Antimicrobial testing indicates higher growth inhibition effect of complex 1 than complex 2. Moreover the effectivity of both complexes against bacteria (Staphylococcus aureus and Escherichia coli) is superior (or similar) to that of the commercially available Ag(I) sulfadiazine, AgSD (used, for example, in Dermazine cream). The binding of the Ag(I) complexes to calf thymus DNA was investigated using electronic absorption, fluorescence and circular dichroism spectrophotometry. The Stern-Volmer quenching constants obtained from the linear quenching plot were estimated in the range from 2.01×103 to 20.34×103M-1. The results of topoisomerase I and topoisomerase II (Topo I and Topo II) inhibition assay suggested that complex 2 inhibits the enzyme activity of both enzymes at a concentration of 2µM. The cytotoxicity of both complexes on L1210 leukemia cells was revealed to be approximately three times higher than that of cisplatin. Moreover, the new Ag(I) complexes also induced apoptosis of the leukemia cells. The high DNA binding activity of these complexes is considered to be responsible for their cytotoxic effects.


Assuntos
Bactérias/efeitos dos fármacos , Complexos de Coordenação/farmacologia , DNA/metabolismo , Glicina/química , Niacinamida/química , Prata/farmacologia , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/química , Cristalografia por Raios X , DNA/química , DNA Topoisomerases/metabolismo , Ativação Enzimática/efeitos dos fármacos , Concentração Inibidora 50 , Camundongos , Prata/química
9.
J Inorg Biochem ; 154: 67-77, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26600190

RESUMO

A series of new 3d metal complexes with 5-chloro-quinolin-8-ol (ClQ), [Mn(ClQ)2] (1), [Fe(ClQ)3] (2), [Co(ClQ)2(H2O)2] (3), [Ni(ClQ)2(H2O)2] (4), [Cu(ClQ)2] (5), [Zn(ClQ)2(H2O)2] (6), [Mn(ClQ)3]·DMF (7) and [Co(ClQ)3]·DMF·(EtOH)0.35 (8) (DMF=N,N-dimethylformamide), has been synthesized and characterized by elemental analysis, IR spectroscopy and TG-DTA thermal analysis. X-ray structure analysis of 7 and 8 revealed that these molecular complexes contain three chelate ClQ molecules coordinated to the central atoms in a deformed octahedral geometry and free space between the complex units is filled by solvated DMF and ethanol molecules. Antimicrobial activity of 1-6 was tested by determining the minimum inhibitory concentration and minimum microbicidal concentration against 12 strains of bacteria and 5 strains of fungi. The intensity of antimicrobial action varies depending on the group of microorganism and can be sorted: 1>ClQ>6>3/4>2>5. Complexes 1-6 exhibit high cytotoxic activity against MDA-MB, HCT-116 and A549 cancer cell lines. Among them, complex 2 is significantly more cytotoxic against MDA-MB cells than cisplatin at all tested concentrations and is not cytotoxic against control mesenchymal stem cells indicating that this complex seems to be a good candidate for future pharmacological evaluation. Interaction of 1-6 with DNA was investigated using UV-VIS spectroscopy, fluorescence spectroscopy and agarose gel electrophoresis. The binding studies indicate that 1-6 can interact with CT-DNA through intercalation; complex 2 has the highest binding affinity. Moreover, complexes 1-6 inhibit the catalytic activity of topoisomerase I.


Assuntos
Antibacterianos/síntese química , Quelantes/síntese química , Cloroquinolinóis/síntese química , Complexos de Coordenação/síntese química , Inibidores da Topoisomerase I/síntese química , Antibacterianos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Quelantes/farmacologia , Cloroquinolinóis/farmacologia , Complexos de Coordenação/farmacologia , DNA/química , Células HCT116 , Humanos , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Modelos Moleculares , Conformação Molecular , Inibidores da Topoisomerase I/farmacologia , Elementos de Transição/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...