Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Mol Imaging Biol ; 25(6): 1115-1124, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37580462

RESUMO

PURPOSE: Noninvasive imaging of protein aggregates in the brain is critical for the early diagnosis, disease monitoring, and evaluation of the effectiveness of novel therapies for Alzheimer's disease (AD). Near-infrared fluorescence (NIRF) imaging with specific probes is a promising technique for the in vivo detection of protein deposits without radiation exposure. Comprehensive screening of fluorescent compounds identified a novel compound, THK-565, for the in vivo imaging of amyloid-ß (Aß) deposits in the mouse brain. This study assessed whether THK-565 could detect amyloid-ß deposits in vivo in the AD mouse model. PROCEDURES: The fluorescent properties of THK-565 were evaluated in the presence and absence of Aß fibrils. APP knock-in (APP-KI) mice were used as an animal model of AD. In vivo NIRF images were acquired after the intravenous administration of THK-565 and THK-265 in mice. The binding selectivity of THK-565 to Aß was evaluated using brain slices obtained from these mouse models. RESULTS: The fluorescence intensity of the THK-565 solution substantially increased by mixing with Aß fibrils. The maximum emission wavelength of the complex of THK-565 and Aß fibrils was 704 nm, which was within the optical window range. THK-565 selectively bound to amyloid deposits in brain sections of APP-KI mice After the intravenous administration of THK-565, the fluorescence signal in the head of APP-KI mice was significantly higher than that of wild-type mice and higher than that after administration of THK-265. Ex vivo analysis confirmed that the THK-565 signal corresponded to Aß immunostaining in the brain sections of these mice. CONCLUSIONS: A novel NIRF probe, THK-565, enabled the in vivo detection of Aß deposits in the brains of the AD mouse model, suggesting that NIRF imaging with THK-565 could non-invasively assess disease-specific pathology in AD.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/metabolismo , Placa Amiloide/metabolismo , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Corantes Fluorescentes/química , Camundongos Transgênicos
2.
J Nucl Med ; 64(9): 1495-1501, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37321821

RESUMO

Tau PET tracers are expected to be sufficiently sensitive to track the progression of age-related tau pathology in the medial temporal cortex. The tau PET tracer N-(4-[18F]fluoro-5-methylpyridin-2-yl)-7-aminoimidazo[1,2-a]pyridine ([18F]SNFT-1) has been successfully developed by optimizing imidazo[1,2-a]pyridine derivatives. We characterized the binding properties of [18F]SNFT-1 using a head-to-head comparison with other reported 18F-labeled tau tracers. Methods: The binding affinity of SNFT-1 to tau, amyloid, and monoamine oxidase A and B was compared with that of the second-generation tau tracers MK-6240, PM-PBB3, PI-2620, RO6958948, JNJ-64326067, and flortaucipir. In vitro binding properties of 18F-labeled tau tracers were evaluated through the autoradiography of frozen human brain tissues from patients with diverse neurodegenerative disease spectra. Pharmacokinetics, metabolism, and radiation dosimetry were assessed in normal mice after intravenous administration of [18F]SNFT-1. Results: In vitro binding assays demonstrated that [18F]SNFT-1 possesses high selectivity and high affinity for tau aggregates in Alzheimer disease (AD) brains. Autoradiographic analysis of tau deposits in medial temporal brain sections from patients with AD showed a higher signal-to-background ratio for [18F]SNFT-1 than for the other tau PET tracers and no significant binding with non-AD tau, α-synuclein, transactiviation response DNA-binding protein-43, and transmembrane protein 106B aggregates in human brain sections. Furthermore, [18F]SNFT-1 did not bind significantly to various receptors, ion channels, or transporters. [18F]SNFT-1 showed a high initial brain uptake and rapid washout from the brains of normal mice without radiolabeled metabolites. Conclusion: These preclinical data suggest that [18F]SNFT-1 is a promising and selective tau radiotracer candidate that allows the quantitative monitoring of age-related accumulation of tau aggregates in the human brain.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Camundongos , Animais , Doenças Neurodegenerativas/metabolismo , Doença de Alzheimer/metabolismo , Piridinas/farmacocinética , Encéfalo/metabolismo , Proteínas tau/metabolismo , Tomografia por Emissão de Pósitrons
3.
PLoS One ; 18(6): e0287047, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37315033

RESUMO

Astrogliosis is a crucial feature of neuroinflammation and is characterized by the significant upregulation of glial fibrillary acidic protein (GFAP) expression. Hence, visualizing GFAP in the living brain of patients with damaged central nervous system using positron emission tomography (PET) is of great importance, and it is expected to depict neuroinflammation more directly than existing neuroinflammation imaging markers. However, no PET radiotracers for GFAP are currently available. Therefore, neuroimaging with antibody-like affinity proteins could be a viable strategy for visualizing imaging targets that small molecules rarely recognize, such as GFAP, while we need to overcome the challenges of slow clearance and low brain permeability. The E9 nanobody, a small-affinity protein with high affinity and selectivity for GFAP, was utilized in this study. E9 was engineered by fusing a brain shuttle peptide that facilitates blood-brain barrier permeation via two different types of linker domains: E9-GS-ApoE (EGA) and E9-EAK-ApoE (EEA). E9, EGA and EEA were radiolabeled with fluorine-18 using cell-free protein radiosynthesis. In vitro autoradiography showed that all radiolabeled proteins exhibited a significant difference in neuroinflammation in the brain sections created from a rat model constructed by injecting lipopolysaccharide (LPS) into the unilateral striatum of wildtype rats, and an excess competitor displaced their binding. However, exploratory in vivo PET imaging and ex vivo biodistribution studies in the rat model failed to distinguish neuroinflammatory lesions within 3 h of 18F-EEA intravenous injection. This study contributes to a better understanding of the characteristics of small-affinity proteins fused with a brain shuttle peptide for further research into the use of protein molecules as PET tracers for imaging neuropathology.


Assuntos
Doenças Neuroinflamatórias , Tomografia Computadorizada por Raios X , Animais , Ratos , Apolipoproteínas E , Encéfalo/diagnóstico por imagem , Proteína Glial Fibrilar Ácida , Peptídeos , Distribuição Tecidual , Anticorpos de Domínio Único
4.
J Neuropathol Exp Neurol ; 82(5): 427-437, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36882045

RESUMO

Quantification of in vivo reactive astrogliosis, which represents neural inflammation and remodeling in the brain, is an emerging methodology for the evaluation of patients with neurodegenerative diseases. [18F]THK-5351 is a positron emission tomography (PET) tracer for monoamine oxidase B (MAO-B), a molecular marker of reactive astrogliosis. We performed in vivo [18F]THK-5351 PET in a patient who at autopsy was found to have argyrophilic grain disease (AGD) with comorbid pathology to visualize reactive astrogliosis for the first time. We aimed to validate an imaging-pathology correlation using [18F]THK-5351 PET and the autopsy brain. The patient, a 78-year-old man, was pathologically diagnosed with AGD combined with limbic-predominant age-related transactive response DNA-binding protein of 43 kDa encephalopathy and Lewy body disease without Alzheimer disease-related neuropathological changes. Reactive astrogliosis in the postmortem brain was abundant in the inferior temporal gyrus, insular gyrus, entorhinal cortex, and ambient gyrus where premortem [18F]THK-5351 signals were high. We found a proportional correlation between the amount of reactive astrogliosis in the postmortem brain and the in vivo [18F]THK-5351 standardized uptake value ratio (r = 0.8535, p = 0.0004). These results indicated that reactive astrogliosis in AGD with comorbid pathology could be identified and quantified by in vivo MAO-B imaging.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Masculino , Humanos , Idoso , Gliose/patologia , Doença de Alzheimer/patologia , Doenças Neurodegenerativas/complicações , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/metabolismo , Encéfalo/patologia , Tomografia por Emissão de Pósitrons , Monoaminoxidase/metabolismo , Proteínas tau/metabolismo
5.
Front Neurosci ; 16: 807435, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35210989

RESUMO

Many neurodegenerative diseases are neuropathologically characterized by neuronal loss, gliosis, and the deposition of misfolded proteins such as ß-amyloid (Aß) plaques and tau tangles in Alzheimer's disease (AD). In postmortem AD brains, reactive astrocytes and activated microglia are observed surrounding Aß plaques and tau tangles. These activated glial cells secrete pro-inflammatory cytokines and reactive oxygen species, which may contribute to neurodegeneration. Therefore, in vivo imaging of glial response by positron emission tomography (PET) combined with Aß and tau PET would provide new insights to better understand the disease process, as well as aid in the differential diagnosis, and monitoring glial response disease-specific therapeutics. There are two promising targets proposed for imaging reactive astrogliosis: monoamine oxidase-B (MAO-B) and imidazoline2 binding site (I2BS), which are predominantly expressed in the mitochondrial membranes of astrocytes and are upregulated in various neurodegenerative conditions. PET tracers targeting these two MAO-B and I2BS have been evaluated in humans. [18F]THK-5351, which was originally designed to target tau aggregates in AD, showed high affinity for MAO-B and clearly visualized reactive astrocytes in progressive supranuclear palsy (PSP). However, the lack of selectivity of [18F]THK-5351 binding to both MAO-B and tau, severely limits its clinical utility as a biomarker. Recently, [18F]SMBT-1 was developed as a selective and reversible MAO-B PET tracer via compound optimization of [18F]THK-5351. In this review, we summarize the strategy underlying molecular imaging of reactive astrogliosis and clinical studies using MAO-B and I2BS PET tracers.

6.
ACS Chem Neurosci ; 13(3): 322-329, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35049267

RESUMO

(S)-(2-Methylpyrid-5-yl)-6-[(3-[18F]fluoro-2-hydroxy)propoxy]quinoline ([18F]SMBT-1) was recently developed as a novel class of selective and reversible monoamine oxidase-B (MAO-B) tracers for in vivo imaging of reactive astrogliosis via positron emission tomography. To investigate the effect of the chirality of [18F]SMBT-1 on tracer performance, we synthesized (S)-[18F]6 ([18F]SMBT-1) and (R)-[18F]6 and compared their binding properties, pharmacokinetics, and metabolism. (S)-6 showed higher binding affinity to MAO-B and lower binding affinity to MAO-A than (R)-6, demonstrating a higher selectivity ratio (MAO-B/MAO-A). A pharmacokinetic study in mice demonstrated that both (S)-[18F]6 and (R)-[18F]6 showed sufficient initial brain uptake. However, (S)-[18F]6 was cleared significantly faster from the body. An abundant sulfoconjugate metabolite M2 was observed in plasma for (S)-[18F]6 but not for (R)-[18F]6. In vitro sulfation assays confirmed that (S)-6 was more reactive than (R)-6, consistent with the in vivo findings. Mefenamic acid, a selective sulfotransferase 1A1 (SULT1A1) inhibitor, strongly inhibited the in vitro sulfation of (S)-6 by mouse liver fractions, human liver cytosol fractions, and human recombinant SULT1A1 enzyme. Genetic polymorphisms of SULT1A1 did not affect the sulfation of (S)-6 in vitro. In conclusion, (S)-[18F]6 had a more favorable binding affinity and binding selectivity for MAO-B than (R)-[18F]6. Additionally, (S)-[18F]6 also possessed better pharmacological and metabolic properties than (R)-[18F]6. These results suggest that (S)-[18F]6 ([18F]SMBT-1) is a promising candidate for application in the imaging of MAO-B in vivo.


Assuntos
Monoaminoxidase , Tomografia por Emissão de Pósitrons , Animais , Encéfalo , Gliose , Camundongos , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/química , Tomografia por Emissão de Pósitrons/métodos
7.
J Nucl Med ; 63(10): 1560-1569, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35086892

RESUMO

A neuroinflammatory reaction in Alzheimer disease (AD) brains involves reactive astrocytes that overexpress monoamine oxidase-B (MAO-B). 18F-(S)-(2-methylpyrid-5-yl)-6-[(3-fluoro-2-hydroxy)propoxy]quinoline (18F-SMBT-1) is a novel 18F PET tracer highly selective for MAO-B. We characterized the clinical performance of 18F-SMBT-1 PET across the AD continuum as a potential surrogate marker of reactive astrogliosis. Methods: We assessed 18F-SMBT-1 PET regional binding in 77 volunteers (76 ± 5.5 y old; 41 women, 36 men) across the AD continuum: 57 who were cognitively normal (CN) (44 amyloid-ß [Aß]-negative [Aß-] and 13 Aß-positive [Aß+]), 12 who had mild cognitive impairment (9 Aß- and 3 Aß+), and 8 who had AD dementia (6 Aß+ and 2 Aß-). All participants also underwent Aß and tau PET imaging, 3-T MRI, and neuropsychologic evaluation. Tau imaging results were expressed in SUV ratios using the cerebellar cortex as a reference region, whereas Aß burden was expressed in centiloids. 18F-SMBT-1 outcomes were expressed as SUV ratio using the subcortical white matter as a reference region. Results: 18F-SMBT-1 yielded high-contrast images at steady state (60-80 min after injection). When compared with the Aß- CN group, there were no significant differences in 18F-SMBT-1 binding in the group with Aß- mild cognitive impairment. Conversely, 18F-SMBT-1 binding was significantly higher in several cortical regions in the Aß+ AD group but also was significantly lower in the mesial temporal lobe and basal ganglia. Most importantly, 18F-SMBT-1 binding was significantly higher in the same regions in the Aß+ CN group as in the Aß- CN group. When all clinical groups were considered together, 18F-SMBT-1 correlated strongly with Aß burden and much less with tau burden. Although in most cortical regions 18F-SMBT-1 did not correlate with brain volumetrics, regions known for high MAO-B concentrations presented a direct association with hippocampal and gray matter volumes, whereas the occipital lobe was directly associated with white matter hyperintensity. 18F-SMBT-1 binding was inversely correlated with Mini Mental State Examination and the Australian Imaging Biomarkers and Lifestyle's Preclinical Alzheimer Cognitive Composite in some neocortical regions such as the frontal cortex, lateral temporal lobe, and supramarginal gyrus. Conclusion: Cross-sectional human PET studies with 18F-SMBT-1 showed that Aß+ AD patients, but most importantly, Aß+ CN individuals, had significantly higher regional 18F-SMBT-1 binding than Aß- CN individuals. Moreover, in several regions in the brain, 18F-SMBT-1 retention was highly associated with Aß load. These findings suggest that increased 18F-SMBT-1 binding is detectable at the preclinical stages of Aß accumulation, providing strong support for its use as a surrogate marker of astrogliosis in the AD continuum.


Assuntos
Doença de Alzheimer , Quinolinas , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Austrália , Biomarcadores , Estudos Transversais , Feminino , Gliose , Humanos , Inflamação , Masculino , Monoaminoxidase
8.
J Nucl Med ; 63(10): 1551-1559, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35086898

RESUMO

Reactive gliosis, characterized by reactive astrocytes and activated microglia, contributes greatly to neurodegeneration throughout the course of Alzheimer disease (AD). Reactive astrocytes overexpress monoamine oxidase B (MAO-B). We characterized the clinical performance of 18F-(S)-(2-methylpyrid-5-yl)-6-[(3-fluoro-2-hydroxy)propoxy]quinoline (18F-SMBT-1), a novel MAO-B PET tracer as a potential surrogate marker of reactive astrogliosis. Methods: Seventy-seven participants-53 who were elderly and cognitively normal, 7 with mild cognitive impairment, 7 with AD, and 10 who were young and cognitively normal-were recruited for the different aspects of the study. Older participants underwent 3-dimensional magnetization-prepared rapid gradient-echo MRI and amyloid-ß, tau, and 18F-SMBT-1 PET. To ascertain 18F-SMBT-1 selectivity to MAO-B, 9 participants underwent 2 18F-SMBT-1 scans, before and after receiving 5 mg of selegiline twice daily for 5 d. To compare selectivity, 18F-THK5351 studies were also conducted before and after selegiline. Amyloid-ß burden was expressed in centiloids. 18F-SMBT-1 outcomes were expressed as SUV, as well as tissue ratios and binding parameters using the subcortical white matter as a reference region. Results: 18F-SMBT-1 showed robust entry into the brain and reversible binding kinetics, with high tracer retention in basal ganglia, intermediate retention in cortical regions, and the lowest retention in cerebellum and white matter, which tightly follows the known regional brain distribution of MAO-B (R 2 = 0.84). More than 85% of 18F-SMBT-1 signal was blocked by selegiline across the brain, and in contrast to 18F-THK5351, no residual cortical activity was observed after the selegiline regimen, indicating high selectivity for MAO-B and low nonspecific binding. 18F-SMBT-1 also captured the known MAO-B increases with age, with an annual rate of change (∼2.6%/y) similar to the in vitro rates of change (∼1.9%/y). Quantitative and semiquantitative measures of 18F-SMBT-1 binding were strongly associated (R 2 > 0.94), suggesting that a simplified tissue-ratio approach could be used to generate outcome measures. Conclusion: 18F-SMBT-1 is a highly selective MAO-B tracer, with low nonspecific binding, high entry into the brain, and reversible kinetics. Moreover, 18F-SMBT-1 brain distribution matches the reported in vitro distribution and captures the known MAO-B increases with age, suggesting that 18F-SMBT-1 can potentially be used as a surrogate marker of reactive astrogliosis. Further validation of these findings with 18F-SMBT-1 will require examination of a much larger series, including participants with mild cognitive impairment and AD.


Assuntos
Doença de Alzheimer , Quinolinas , Idoso , Doença de Alzheimer/metabolismo , Aminopiridinas , Peptídeos beta-Amiloides , Gliose , Humanos , Monoaminoxidase/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/metabolismo , Selegilina
9.
Front Aging Neurosci ; 13: 761010, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34912209

RESUMO

Introduction: We aimed to determine whether in vivo tau deposits and monoamine oxidase B (MAO-B) detection using 18F-THK5351 positron emission tomography (PET) can assist in the differential distribution in patients with corticobasal syndrome (CBS), progressive supranuclear palsy (PSP), and Alzheimer's disease (AD) and whether 18F-THK5351 retention of lesion sites in CBS and PSP can correlate with clinical parameters. Methods: 18F-THK5351 PET was performed in 35 participants, including 7, 9, and 10 patients with CBS, PSP, and AD, respectively, and 9 age-matched normal controls. In CBS and PSP, cognitive and motor functions were assessed using the Montreal Cognitive Assessment, Addenbrooke's Cognitive Examination-Revised, and Frontal Assessment Battery, Unified Parkinson's Disease Rating Scale Motor Score, and PSP Rating Scale. Results: 18F-THK5351 retention was observed in sites susceptible to disease-related pathologies in CBS, PSP, and AD. 18F-THK5351 uptake in the precentral gyrus clearly differentiated patients with CBS from those with PSP and AD. Furthermore, 18F-THK5351 uptake in the inferior temporal gyrus clearly differentiated patients with AD from those with CBS and PSP. Regional 18F-THK5351 retention was associated with the cognitive function in CBS and PSP. Conclusion: Measurement of the tau deposits and MAO-B density in the brain using 18F-THK5351 may be helpful for the differential diagnosis of tauopathies and for understanding disease stages.

10.
Sci Rep ; 11(1): 2588, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510301

RESUMO

Brain positron emission tomography (PET) imaging with radiolabelled proteins is an emerging concept that potentially enables visualization of unique molecular targets in the brain. However, the pharmacokinetics and protein radiolabelling methods remain challenging. Here, we report the performance of an engineered, blood-brain barrier (BBB)-permeable affibody molecule that exhibits rapid clearance from the brain, which was radiolabelled using a unique fluorine-18 labelling method, a cell-free protein radiosynthesis (CFPRS) system. AS69, a small (14 kDa) dimeric affibody molecule that binds to the monomeric and oligomeric states of α-synuclein, was newly designed for brain delivery with an apolipoprotein E (ApoE)-derived brain shuttle peptide as AS69-ApoE (22 kDa). The radiolabelled products 18F-AS69 and 18F-AS69-ApoE were successfully synthesised using the CFPRS system. Notably, 18F-AS69-ApoE showed higher BBB permeability than 18F-AS69 in an ex vivo study at 10 and 30 min post injection and was partially cleared from the brain at 120 min post injection. These results suggest that small, a brain shuttle peptide-fused fluorine-18 labelled protein binders can potentially be utilised for brain molecular imaging.


Assuntos
Apolipoproteínas E/metabolismo , Radioisótopos de Flúor/análise , Peptídeos/química , Proteínas Recombinantes de Fusão/síntese química , Animais , Apolipoproteínas E/genética , Humanos , Masculino , Farmacocinética , Tomografia por Emissão de Pósitrons , Proteínas Recombinantes de Fusão/química
11.
J Nucl Med ; 62(2): 253-258, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32646880

RESUMO

Reactive astrocytes play a key role in the pathogenesis of various neurodegenerative diseases. Monoamine oxidase-B (MAO-B) is one of the promising targets for the imaging of astrogliosis in the human brain. A novel selective and reversible MAO-B tracer, (S)-(2-methylpyrid-5-yl)-6-[(3-18F-fluoro-2-hydroxy)propoxy]quinoline (18F-SMBT-1), was successfully developed via lead optimization from the first-generation tau PET tracer 18F-THK-5351. Methods: SMBT-1 was radiolabeled with 18F using the corresponding precursor. The binding affinity of radiolabeled compounds to MAO-B was assessed using saturation and competitive binding assays. The binding selectivity of 18F-SMBT-1 to MAO-B was evaluated by autoradiography of frozen human brain tissues. The pharmacokinetics and metabolism were assessed in normal mice after intravenous administration of 18F-SMBT-1. A 14-d toxicity study after the intravenous administration of 18F-SMBT-1 was performed using rats and mice. Results: In vitro binding assays demonstrated a high binding affinity of 18F-SMBT-1 to MAO-B (dissociation constant, 3.7 nM). In contrast, it showed low binding affinity to MAO-A and protein aggregates such as amyloid-ß and tau fibrils. Autoradiographic analysis showed higher amounts of 18F-SMBT-1 binding in the Alzheimer disease brain sections than in the control brain sections. 18F-SMBT-1 binding was completely displaced with the reversible MAO-B inhibitor lazabemide, demonstrating the high selectivity of 18F-SMBT-1 for MAO-B. Furthermore, 18F-SMBT-1 showed a high uptake by brain, rapid washout, and no radiolabeled metabolites in the brain of normal mice. 18F-SMBT-1 showed no significant binding to various receptors, ion channels, or transporters, and no toxic effects related to its administration were observed in mice and rats. Conclusion:18F-SMBT-1 is a promising and selective MAO-B PET tracer candidate, which would be useful for quantitative monitoring of astrogliosis in the human brain.


Assuntos
Radioisótopos de Flúor/química , Monoaminoxidase/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Humanos , Camundongos , Traçadores Radioativos , Distribuição Tecidual
12.
Nucl Med Biol ; 93: 11-18, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33221641

RESUMO

INTRODUCTION: [18F]THK-5351 was originally developed as a positron emission tomography (PET) imaging tracer for the detection of accumulated tau proteins, the pathological hallmark of Alzheimer's disease (AD). However, clinical studies of [18F]THK-5351 revealed the existence of off-target binding to monoamine oxidase-B (MAO-B). To overcome this off-target binding, in this work, we synthesized and evaluated 2-pyrrolopyridinylquinoline (PPQ) derivatives as selective tau PET imaging tracers. METHODS: The core structure of PPQ derivatives was synthesized mainly using the Buchwald-Hartwig amination coupling reaction. All derivatives were evaluated for binding affinity towards tau and MAO-B by in vitro competitive binding assay. Radiosynthesis of PPQ derivatives was performed by 18F-radiolabeling of their tosylate precursors with activated [18F]KF/Kryptofix222 complex in dimethylsulfoxide by heating at 110 °C for 10 min. The biological properties of these [18F]PPQ derivatives were characterized by in vitro autoradiography of postmortem AD brain sections and by assay of ex vivo biodistribution in mice. RESULTS: The PPQ derivatives were synthesized, with yields of 49-84%. In vitro competitive binding assay revealed that two novel PPQ derivatives-PPQ8 and PPQ9-demonstrated high binding affinity for tau (IC50 = 4.9 and 6.9 nM, respectively). The radiosynthesis of [18F]PPQ8 and [18F]PPQ9 yielded 1.4% and 50.1% isolated non-decay corrected radiochemical yield, respectively, with >99% radiochemical purity. The molar radioactivities of [18F]PPQ8 and [18F]PPQ9 were 16.9 and 64.8 GBq/µmol, respectively. The in vitro and ex vivo biological characterization of [18F]PPQ8 and [18F]PPQ9 revealed that these tracers were selective for tau in AD brain sections without off-target binding, and they furthermore demonstrated brain uptake in normal mice. CONCLUSIONS: 18F-labeled PPQ derivatives improved binding affinity and selectivity for tau aggregates in AD. Further structural optimization to improve pharmacokinetics for potent tau PET imaging tracers is required.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Quinolinas/química , Quinolinas/síntese química , Proteínas tau/metabolismo , Animais , Técnicas de Química Sintética , Camundongos , Quinolinas/farmacocinética , Distribuição Tecidual
13.
Brain Res ; 1749: 147139, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33010207

RESUMO

Aggregation, fibril formation, and deposition of amyloid ß (Aß) protein are believed to be the central pathogeneses of Alzheimer's disease (AD). Numerous studies have shown that fibril formation is promoted by preformed seeds at the beginning of the aggregation process. Therefore, aggregated molecules that promote fibrillization of Aß protein as seeds could affect the pathology. We recently found that approximately 40 amino acid hydrophobic peptides, BBF2H7-derived small peptide (BSP) fragments, are generated via intramembranous cleavage under endoplasmic reticulum (ER) stress conditions. Interestingly, similar to Aß protein, the fragments exhibit a high aggregation propensity and form fibril structures. It has been noted that ER stress is involved in the pathogenesis of AD. In this study, we examined the effect of BSP fragments on aggregation and cytotoxicity of Aß1-40 protein, which is generated as a major species of Aß protein, but has a lower aggregative property than Aß1-42 protein. We demonstrated that BSP fragments promote aggregation of Aß1-40 protein. Aggregates of Aß1-40 protein mediated by BSP fragments also exhibited potent neurotoxicity. Our findings suggest the possibility that BSP fragments affect accumulation of Aß proteins and are involved in the pathogenesis of AD.


Assuntos
Amiloide/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Neurônios/metabolismo , Peptídeos beta-Amiloides/metabolismo , Linhagem Celular , Humanos , Fragmentos de Peptídeos/metabolismo
14.
FASEB J ; 34(1): 865-880, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914686

RESUMO

Intramembrane cleavage of transmembrane proteins is a fundamental cellular process to produce important signals that elicit biological responses. These proteolytic events are known as regulated intramembrane proteolysis (RIP). ATF6 and BBF2H7 are transmembrane basic leucine zipper transcription factors and are subjected to RIP by site-1 protease (S1P) and site-2 protease (S2P) sequentially in response to endoplasmic reticulum (ER) stress. However, the detailed mechanisms responsible for RIP of the transcription factors, including the precise cutting sites, are still unknown. In this study, we demonstrated that S1P cleaves BBF2H7 just before the RXXL S1P recognition motif. Conversely, S2P cut at least three different sites in the membrane (next to Leu380, Met381, and Leu385), indicating that S2P cleaves the substrates at variable sites or via a multistep process. Interestingly, we found BBF2H7-derived small peptide (BSP) fragments located between the S1P and S2P cleavage sites in cells exposed to ER stress. Major type of BSP fragments was composed of 45 amino acid including partial transmembrane and luminal regions and easily aggregates like amyloid ß (Aß) protein. These results advance the understanding of poorly characterized ER stress-dependent RIP. Furthermore, the aggregable peptides produced by ER stress could link to the pathophysiology of neurodegenerative disorders.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/metabolismo , Proteólise , Fator 6 Ativador da Transcrição/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Humanos , Fragmentos de Peptídeos/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Transcrição Gênica/fisiologia
15.
J Tradit Complement Med ; 9(4): 328-335, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31453129

RESUMO

BACKGROUND AND AIM: The aging-dependent activation of glycogen synthase kinase-3ß (GSK-3ß) has been suggested to be important in the onset of dementia. To discover novel therapeutic Kampo medicines for dementia, we examined the effects of orengedokuto (OGT; huáng lián jiedú tang) and san'oshashinto (SST; san huáng xiè xin tang) on memory deficits and GSK-3ß activity in senescence-accelerated prone mice (SAMP8). EXPERIMENTAL PROCEDURE: The object recognition test (ORT) and conditioned fear memory test (CFT) were employed to elucidate short-term working memory and long-term fear memory. The activity of GSK-3ß and the phosphorylation of related molecules were measured using a kinase assay and Western blotting. RESULTS AND CONCLUSION: OGT and SST attenuated memory deficits in SAMP8 in ORT, but not in CFT. In ex vivo experiments, cortical GSK-3ß activity was significantly stronger in SAMP8 than in SAMR1. The enhanced cortical GSK-3ß activity in SAMP8 was accompanied by a significant increase in the level of phosphorylated collapsin response mediator protein-2 (CRMP2), an important factor that is involved in the regulation of microtubule stability. OGT and SST attenuated not only increases in cortical GSK-3ß activity, but also the levels of phosphorylated CRMP2 in SAMP8. In vitro experiments, flavonoids contained in these kampo medicines, inhibited GSK-3ß activity in concentration-dependent manners. These results suggest that OGT and SST prevent aging-induced short-term working memory deficits by inhibiting aging-dependent elevations in the cortical GSK-3ß activity and subsequent CRMP2 phosphorylation.

16.
Ann Nucl Med ; 33(6): 375-382, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30796626

RESUMO

OBJECTIVE: Amyloid-ß plaques and neurofibrillary tangles composed of tau protein are the neuropathological hallmarks of Alzheimer's disease. In recent years, marked progress has been made in Alzheimer's disease research using tau ligands for positron emission tomography (PET). However, the issue of off-target binding, that is, the binding of ligands to regions without tau pathology, remains unresolved. Tissues with melanin-containing cells (MCCs) have been suggested as binding targets for tau ligands. In the present study, we characterized the MCC-binding properties of representative tau PET ligands. METHODS: Autoradiographic studies of [18F]AV-1451 and [18F]THK5351 were conducted using postmortem human midbrain sections. Saturation-binding assays of [18F]AV-1451 and [18F]THK5351 were performed with B16F10 melanoma cells. The blocking effects of 25 compounds against [18F]THK5351 binding to B16F10 cells were used to investigate the relationship between chemical structure and MCC binding. RESULTS: Autoradiography demonstrated specific binding of the radioligands in the substantia nigra. [18F]AV-1451 and [18F]THK5351 exhibited saturable binding to melanoma cells ([18F]AV-1451: Kd = 669 ± 196 nM, Bmax = 622 ± 269 pmol/mg protein; [18F]THK5351: Kd = 441 ± 126 nM, Bmax = 559 ± 75.5 pmol/mg protein). In blocking studies with melanoma cells, compounds bearing multiple aromatic rings and an aminopyridine group, including tau ligands such as AV-1451, PBB3, and a lead compound of MK-6240, exhibited the inhibition of [18F]THK5351 binding comparable to self-blocking by THK5351 (> 70% at 10 µM). CONCLUSIONS: These studies suggest that the binding properties of [18F]AV-1451 and [18F]THK5351 are sufficient to expect highlighting of tissues with a high density of MCCs. The findings of the present study should aid the development of neuroimaging ligands that do not bind to MCC.


Assuntos
Melaninas/metabolismo , Tomografia por Emissão de Pósitrons , Proteínas tau/metabolismo , Aminopiridinas/metabolismo , Autorradiografia , Sítios de Ligação , Carbolinas/metabolismo , Linhagem Celular , Humanos , Quinolinas/metabolismo
17.
Brain Behav ; 8(12): e01145, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30358161

RESUMO

INTRODUCTION: Alzheimer's disease (AD) is characterized by accumulation of extracellular amyloid-ß and intracellular tau neurofibrillary tangles. The recent advent of tau positron emission tomography (PET) has enabled in vivo assessment of tau pathology. The aim of this study was to explore whether tau deposition influences the structural connectivity in amyloid-negative and amyloid-positive groups, and further explore the difference between the groups. METHODS: We investigated 18 patients with amnestic mild cognitive impairment/mild AD (AD-spectrum group) and 35 cognitively normal older adults (CN group) using diffusion MRI, amyloid, and tau PET imaging. Diffusion connectometry was performed to identify white matter pathways correlated with each of the six variables of tau deposition in the bilateral hippocampi, temporal lobes, posterior and anterior cingulate cortices, precunei, orbitofrontal lobes, and entire cerebrum. RESULTS: The CN group showed increased connectivity along with an increased tau deposition in the bilateral hippocampi, temporal lobes, and entire cerebrum, whereas the AD-spectrum group showed decreased connectivity in the bilateral hippocampi, temporal lobes, anterior and posterior cingulate cortices, precunei, and entire cerebrum. CONCLUSION: These findings suggest that tau deposition in the CN group seems to induce a compensatory response against early neuronal injury or chronic inflammation associated with normal aging, whereas the coexistence of amyloid and tau in the AD-spectrum group seems to outweigh the compensatory response leading to decreased connectivity, suggesting that amyloid plays a crucial role in alternating structural connectivity.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/patologia , Cognição/fisiologia , Proteínas tau/metabolismo , Idoso , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Feminino , Humanos , Masculino , Vias Neurais/metabolismo , Vias Neurais/patologia , Tomografia por Emissão de Pósitrons/métodos , Substância Branca/metabolismo , Substância Branca/patologia
18.
Clin Transl Imaging ; 6(4): 305-316, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30148121

RESUMO

PURPOSE: To provide an overview on positron emission tomography (PET) imaging of tau pathology in Alzheimer's disease (AD) and other neurodegenerative disorders. RESULTS: Different classes of tau tracers such as flortaucipir, THK5317, and PBB3 have been developed and utilized in previous clinical studies. In AD, the topographical distribution of tracer binding follows the known distribution of neurofibrillary tangles and is closely associated with neurodegeneration as well as the clinical phenotype of dementia. Significant retention of tracers has also been observed in the frequent site of the 4-repeat (4R) tau isoform deposits in non-AD tauopathies, such as in progressive supranuclear palsy. However, in vitro binding studies indicate that most tau tracers are less sensitive to straight tau filaments, in contrast to their high binding affinity to paired helical filaments of tau (PHF-tau). The first-generation of tau tracers shows off-target binding in the basal ganglia, midbrain, thalamus, choroid plexus, and venous sinus. Off-target binding of THK5351 to monoamine oxidase B (MAO-B) has been observed in disease-associated brain regions linked to neurodegeneration and is associated with astrogliosis in areas of misfolded protein accumulation. The second generation of tau tracers, such as [18F]MK-6240, is highly selective to PHF-tau with little off-target binding and have enabled the reliable assessment of PHF-tau burden in aging and AD. CONCLUSIONS: Tau PET tracers have enabled in vivo quantification of PHF-tau burden in human brains. Tau PET can help in understanding the underlying cause of dementia symptoms, and in patient selection for clinical trials of anti-dementia therapies.

19.
Front Aging Neurosci ; 10: 223, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30072890

RESUMO

The recent advent of tau-specific positron emission tomography (PET) has enabled in vivo assessment of tau pathology in Alzheimer's disease (AD). However, because PET scanners have limited spatial resolution, the measured signals of small brain structures or atrophied areas are underestimated by partial volume effects (PVEs). The aim of this study was to determine whether partial volume correction (PVC) improves the precision of measures of tau deposits in early AD. We investigated tau deposits in 18 patients with amyloid-positive early AD and in 36 amyloid-negative healthy controls using 18F-THK5351 PET. For PVC, we applied the SPM toolbox PETPVE12. The PET images were then spatially normalized and subjected to voxel-based group analysis using SPM12 for comparison between the early AD patients and healthy controls. We also compared these two groups in terms of brain atrophy using voxel-based morphometry of MRI. We found widespread neocortical tracer retention predominantly in the posterior cingulate and precuneus areas, but also in the inferior temporal lobes, inferior parietal lobes, frontal lobes, and occipital lobes in the AD patients compared with the controls. The pattern of tracer retention was similar between before and after PVC, suggesting that PVC had little effect on the precision of tau load measures. Gray matter atrophy was detected in the medial/lateral temporal lobes and basal frontal lobes in the AD patients. Interestingly, only a few associations were found between atrophy and tau deposits, even after PVC. In conclusion, PVC did not significantly affect 18F-THK5351 PET measures of tau deposits. This discrepancy between tau deposits and atrophy suggests that tau load precedes atrophy.

20.
Acta Neuropathol Commun ; 6(1): 53, 2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29958546

RESUMO

Recent positron emission tomography (PET) studies have demonstrated the accumulation of tau PET tracer in the affected region of progressive supranuclear palsy (PSP) cases. To confirm the binding target of radiotracer in PSP, we performed an imaging-pathology correlation study in two autopsy-confirmed PSP patients who underwent [18F]THK5351 PET before death. One patient with PSP Richardson syndrome showed elevated tracer retention in the globus pallidus and midbrain. In a patient with PSP-progressive nonfluent aphasia, [18F]THK5351 retention also was observed in the cortical areas, particularly the temporal cortex. Neuropathological examination confirmed PSP in both patients. Regional [18F]THK5351 standardized uptake value ratio (SUVR) in antemortem PET was significantly correlated with monoamine oxidase-B (MAO-B) level, reactive astrocytes density, and tau pathology at postmortem examination. In in vitro autoradiography, specific THK5351 binding was detected in the area of antemortem [18F]THK5351 retention, and binding was blocked completely by a reversible selective MAO-B inhibitor, lazabemide, in brain samples from these patients. In conclusion, [18F]THK5351 PET signals reflect MAO-B expressing reactive astrocytes, which may be associated with tau accumulation in PSP.


Assuntos
Aminopiridinas/farmacocinética , Tomografia por Emissão de Pósitrons , Quinolinas/farmacocinética , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Paralisia Supranuclear Progressiva/patologia , Idoso , Idoso de 80 Anos ou mais , Compostos de Anilina/farmacocinética , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Autopsia , Autorradiografia , Correlação de Dados , Feminino , Globo Pálido/diagnóstico por imagem , Globo Pálido/efeitos dos fármacos , Humanos , Imageamento por Ressonância Magnética , Masculino , Mesencéfalo/diagnóstico por imagem , Mesencéfalo/efeitos dos fármacos , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/uso terapêutico , Proteínas do Tecido Nervoso/metabolismo , Ácidos Picolínicos/uso terapêutico , Paralisia Supranuclear Progressiva/tratamento farmacológico , Tiazóis/farmacocinética , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...