Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Physiol ; 234(8): 13209-13219, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30536562

RESUMO

The stimulation of myocardium repair is restricted due to the limited understanding of heart regeneration. Interestingly, endogenous opioid peptides such as dynorphins and enkephalins are suggested to support this process. However, the mechanism-whether through the stimulation of the regenerative capacity of cardiac stem cells or through effects on other cell types in the heart-is still not completely understood. Thus, a model of the spontaneous cardiomyogenic differentiation of mouse embryonic stem (mES) cells via the formation of embryoid bodies was used to describe changes in the expression and localization of opioid receptors within cells during the differentiation process and the potential of the selected opioid peptides, dynorphin A and B, and methionin-enkephalins and leucin-enkephalins, to modulate cardiomyogenic differentiation in vitro. The expressions of both κ- and δ-opioid receptors significantly increased during mES cell differentiation. Moreover, their primary colocalization with the nucleus was followed by their growing presence on the cytoplasmic membrane with increasing mES cell differentiation status. Interestingly, dynorphin B enhanced the downregulation gene expression of Oct4 characteristic of the pluripotent phenotype. Further, dynorphin B also increased cardiomyocyte-specific Nkx2.5 gene expression. However, neither dynorphin A nor methionin-enkephalins and leucin-enkephalins exhibited any significant effects on the course of mES cell differentiation. In conclusion, despite the increased expression of opioid receptors and some enhancement of mES cell differentiation by dynorphin B, the overall data do not support the notion that opioid peptides have a significant potential to promote the spontaneous cardiomyogenesis of mES cells in vitro.


Assuntos
Células-Tronco Embrionárias Murinas/citologia , Miocárdio/citologia , Miócitos Cardíacos/citologia , Peptídeos Opioides/metabolismo , Receptores Opioides/metabolismo , Animais , Diferenciação Celular/fisiologia , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Miócitos Cardíacos/fisiologia , Regeneração/fisiologia
2.
Oncotarget ; 8(48): 83684-83697, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-29137374

RESUMO

The potentiation of the naturally limited regenerative capacity of the heart is dependent on an understanding of the mechanisms that are activated in response to pathological conditions such as hypoxia. Under these conditions, the expression of genes suggested to support cardiomyocyte survival and heart adaptation is triggered. Particularly important are changes in the expression of myosin heavy chain (MHC) isoforms. We propose here that alterations in the expression profiles of MHC genes are induced in response to hypoxia and are primarily mediated by hypoxia inducible factor (HIF). In in vitro models of mouse embryonic stem cell-derived cardiomyocytes, we showed that hypoxia (1% O2) or the pharmacological stabilization of HIFs significantly increased MHCbeta (Myh7) gene expression. The key role of HIF-1alpha is supported by the absence of these effects in HIF-1alpha-deficient cells, even in the presence of HIF-2alpha. Interestingly, ChIP analysis did not confirm the direct interaction of HIF-1alpha with putative HIF response elements predicted in the MHCalpha and beta encoding DNA region. Further analyses showed the significant effect of the mTOR signaling inhibitor rapamycin in inducing Myh7 expression and a hypoxia-triggered reduction in the levels of antisense RNA transcripts associated with the Myh7 gene locus. Overall, the recognized and important role of HIF in the regulation of heart regenerative processes could be highly significant for the development of novel therapeutic interventions in heart failure.

3.
PLoS One ; 12(3): e0173140, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28288171

RESUMO

The differentiation of pluripotent embryonic stem (ES) cells into various lineages in vitro represents an important tool for studying the mechanisms underlying mammalian embryogenesis. It is a key technique in studies evaluating the molecular mechanisms of cardiomyogenesis and heart development and also in embryotoxicology. Herein, modest modifications of the basic protocol for ES cell differentiation into cardiomyocytes were evaluated in order to increase the yield and differentiation status of developed cardiomyocytes. Primarily, the data show that ES cell cultivation in the form of non-adherent embryoid bodies (EBs) for 5 days compared to 8 days significantly improved cardiomyogenic differentiation. This is illustrated by the appearance of beating foci in the adherent EBs layer at earlier phases of differentiation from day 10 up to day 16 and by the significantly higher expression of genes characteristic of cardiomyogenic differentiation (sarcomeric alpha actinin, myosin heavy chain alpha and beta, myosin light chain 2 and 7, and transcriptional factor Nkx2.5) in EBs cultivated under non-adherent conditions for 5 days. The ratio of cardiomyocytes per other cells was also potentiated in EBs cultivated in non-adherent conditions for only 5 days followed by cultivation in adherent serum-free culture conditions. Nevertheless, the alteration in the percentage of beating foci among these two tested cultivation conditions vanished at later phases and also did not affect the total number of cardiomyocytes determined as myosin heavy chain positive cells at the end of the differentiation process on day 20. Thus, although these modifications of the conditions of ES cells differentiation may intensify cardiomyocyte differentiation, the final count of cardiomyocytes might not change. Thus, serum depletion was identified as a key factor that intensified cardiomyogenesis. Further, the treatment of EBs with N-acetylcysteine, a reactive oxygen species scavenger, did not affect the observed increase in cardiomyogenesis under serum depleted conditions. Interestingly, a mild induction of the ventricular-like phenotype of cardiomyocytes was observed in 5-day-old EBs compared to 8-day-old EBs. Overall, these findings bring crucial information on the mechanisms of ES cells differentiation into cardiomyocytes and on the establishment of efficient protocols for the cardiomyogenic differentiation of ES cells. Further, the importance of determining the absolute number of formed cardiomyocyte-like cells per seeded pluripotent cells in contrast to the simple quantification of the ratios of cells is highlighted.


Assuntos
Meios de Cultura Livres de Soro , Células-Tronco Embrionárias/citologia , Miócitos Cardíacos/citologia , Acetilcisteína/administração & dosagem , Actinina/genética , Animais , Células Cultivadas , Proteína Homeobox Nkx-2.5/genética , Técnicas In Vitro , Camundongos , Miosinas/genética
4.
Stem Cells Int ; 2017: 8715798, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29422917

RESUMO

Extensive research in the field of stem cells and developmental biology has revealed evidence of the role of hypoxia as an important factor regulating self-renewal and differentiation. However, comprehensive information about the exact hypoxia-mediated regulatory mechanism of stem cell fate during early embryonic development is still missing. Using a model of embryoid bodies (EBs) derived from murine embryonic stem cells (ESC), we here tried to encrypt the role of hypoxia-inducible factor 1α (HIF1α) in neural fate during spontaneous differentiation. EBs derived from ESC with the ablated gene for HIF1α had abnormally increased neuronal characteristics during differentiation. An increased neural phenotype in Hif1α-/- EBs was accompanied by the disruption of ß-catenin signaling together with the increased cytoplasmic degradation of ß-catenin. The knock-in of Hif1α, as well as ß-catenin ectopic overexpression in Hif1α-/- EBs, induced a reduction in neural markers to the levels observed in wild-type EBs. Interestingly, direct interaction between HIF1α and ß-catenin was demonstrated by immunoprecipitation analysis of the nuclear fraction of wild-type EBs. Together, these results emphasize the regulatory role of HIF1α in ß-catenin stabilization during spontaneous differentiation, which seems to be a crucial mechanism for the natural inhibition of premature neural differentiation.

5.
J Pineal Res ; 61(4): 493-503, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27601067

RESUMO

Melatonin, a molecule involved in the regulation of circadian rhythms, has protective effects against myocardial injuries. However, its capability to regulate the maturation of cardiac progenitor cells is unclear. Recently, several studies have shown that melatonin inhibits the stabilization of hypoxia-inducible factors (HIFs), important signaling molecules with cardioprotective effects. In this study, by employing differentiating mouse embryonic stem cells, we report that melatonin significantly upregulated the expression of cardiac cell-specific markers (myosin heavy chains six and seven) as well as the percentage of myosin heavy chain-positive cells. Importantly, melatonin decreased HIF-1α stabilization and transcriptional activity and, in contrast, induced HIF-2α stabilization. Interestingly, the deletion of HIF-1α completely inhibited the pro-cardiomyogenic effect of melatonin as well as the melatonin-mediated HIF-2α stabilization. Moreover, melatonin increased Sirt-1 levels in a HIF-1α-dependent manner. Taken together, we provide new evidence of a time-specific inhibition of HIF-1α stabilization as an essential feature of melatonin-induced cardiomyogenesis and unexpected different roles of HIF-1α stabilization during various stages of cardiac development. These results uncover new mechanisms underlying the maturation of cardiac progenitor cells and can help in the development of novel strategies for using melatonin in cardiac regeneration therapy.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Melatonina/farmacologia , Células-Tronco Embrionárias Murinas/metabolismo , Desenvolvimento Muscular/efeitos dos fármacos , Miocárdio/metabolismo , Animais , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Miocárdio/citologia , Estabilidade Proteica/efeitos dos fármacos
6.
PLoS One ; 11(6): e0158358, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27355368

RESUMO

Cardiac cell formation, cardiomyogenesis, is critically dependent on oxygen availability. It is known that hypoxia, a reduced oxygen level, modulates the in vitro differentiation of pluripotent cells into cardiomyocytes via hypoxia inducible factor-1alpha (HIF-1α)-dependent mechanisms. However, the direct impact of HIF-1α deficiency on the formation and maturation of cardiac-like cells derived from mouse embryonic stem cells (mESC) in vitro remains to be elucidated. In the present study, we demonstrated that HIF-1α deficiency significantly altered the quality and quantity of mESC-derived cardiomyocytes. It was accompanied with lower mRNA and protein levels of cardiac cell specific markers (myosin heavy chains 6 and 7) and with a decreasing percentage of myosin heavy chain α and ß, and cardiac troponin T-positive cells. As to structural aspects of the differentiated cardiomyocytes, the localization of contractile proteins (cardiac troponin T, myosin heavy chain α and ß) and the organization of myofibrils were also different. Simultaneously, HIF-1α deficiency was associated with a lower percentage of beating embryoid bodies. Interestingly, an observed alteration in the in vitro differentiation scheme of HIF-1α deficient cells was accompanied with significantly lower expression of the endodermal marker (hepatic nuclear factor 4 alpha). These findings thus suggest that HIF-1α deficiency attenuates spontaneous cardiomyogenesis through the negative regulation of endoderm development in mESC differentiating in vitro.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Desenvolvimento Muscular , Miócitos Cardíacos/citologia , Actinina/metabolismo , Animais , Diferenciação Celular , Hipóxia Celular , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Coração/embriologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Miócitos Cardíacos/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Cadeias Leves de Miosina/metabolismo , Oxigênio/química , Regeneração , Troponina T/metabolismo
7.
Rev Sci Instrum ; 87(2): 024301, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26931869

RESUMO

The analysis of digital video output enables the non-invasive screening of various active biological processes. For the monitoring and computing of the beating parameters of cardiomyocytes in vitro, CB Analyser (cardiomyocyte beating analyser) software was developed. This software is based on image analysis of the video recording of beating cardiomyocytes. CB Analyser was tested using cardiomyocytes derived from mouse embryonic stem cells at different stages of cardiomyogenesis. We observed that during differentiation (from day 18), the beat peak width decreased, which corresponded to the increased speed of an individual pulse. However, the beating frequency did not change. Further, the effects of epinephrine modulating mature cardiomyocyte functions were tested to validate the CB Analyser analysis. In conclusion, data show that CB Analyser is a useful tool for evaluating the functions of both developing and mature cardiomyocytes under various conditions in vitro.


Assuntos
Epinefrina/farmacologia , Processamento de Imagem Assistida por Computador , Células-Tronco Embrionárias Murinas , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos , Software , Animais , Linhagem Celular , Camundongos , Microscopia de Vídeo/métodos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo
8.
Chem Biol Interact ; 244: 204-14, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26723917

RESUMO

Hypoxic conditions are suggested to affect the differentiation status of stem cells (SC), including embryonic stem cells (ESC). Hypoxia inducible factor (HIF) is one of the main intracellular molecules responsible for the cellular response to hypoxia. Hypoxia stabilizes HIF by inhibiting the activity of HIF prolyl-hydroxylases (PHD), which are responsible for targeting HIF-alpha subunits for proteosomal degradation. To address the impact of HIF stabilization on the maintenance of the stemness signature of mouse ESC (mESC), we tested the influence of the inhibition of PHDs and hypoxia (1% O2 and 5% O2) on spontaneous ESC differentiation triggered by leukemia inhibitory factor withdrawal for 24 and 48 h. The widely used panhydroxylase inhibitor dimethyloxaloylglycine (DMOG) and PHD inhibitor JNJ-42041935 (JNJ) with suggested higher specificity towards PHDs were employed. Both inhibitors and both levels of hypoxia significantly increased HIF-1alpha and HIF-2alpha protein levels and HIF transcriptional activity in spontaneously differentiating mESC. This was accompanied by significant downregulation of cell proliferation manifested by the complete inhibition of DNA synthesis and partial arrest in the S phase after 48 h. Further, HIF stabilization enhanced downregulation of the expressions of some pluripotency markers (OCT-4, NANOG, ZFP-42, TNAP) in spontaneously differentiating mESC. However, at the same time, there was also a significant decrease in the expression of some genes selected as markers of cell differentiation (e.g. SOX1, BRACH T, ELF5). In conclusion, the short term stabilization of HIF mediated by the PHD inhibitors JNJ and DMOG and hypoxia did not prevent the spontaneous loss of pluripotency markers in mESC. However, it significantly downregulated the proliferation of these cells.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Fator 1 Induzível por Hipóxia/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Aminoácidos Dicarboxílicos/química , Aminoácidos Dicarboxílicos/farmacologia , Animais , Benzimidazóis/química , Benzimidazóis/farmacologia , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Estabilidade Proteica/efeitos dos fármacos , Pirazóis/química , Pirazóis/farmacologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...