Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pflugers Arch ; 461(1): 53-63, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20924598

RESUMO

Single point mutations in pore-forming S6 segments of calcium channels may transform a high-voltage-activated into a low-voltage-activated channel, and resulting disturbances in calcium entry may cause channelopathies (Hemara-Wahanui et al., Proc Natl Acad Sci U S A 102(21):7553-7558, 16). Here we ask the question how physicochemical properties of amino acid residues in gating-sensitive positions on S6 segments determine the threshold of channel activation of Ca(V)1.2. Leucine in segment IS6 (L434) and a newly identified activation determinant in segment IIIS6 (G1193) were mutated to a variety of amino acids. The induced leftward shifts of the activation curves and decelerated current activation and deactivation suggest a destabilization of the closed and a stabilisation of the open channel state by most mutations. A selection of 17 physicochemical parameters (descriptors) was calculated for these residues and examined for correlation with the shifts of the midpoints of the activation curve (ΔV (act)). ΔV (act) correlated with local side-chain flexibility in position L434 (IS6), with the polar accessible surface area of the side chain in position G1193 (IIIS6) and with hydrophobicity in position I781 (IIS6). Combined descriptor analysis for positions I781 and G1193 revealed that additional amino acid properties may contribute to conformational changes during the gating process. The identified physicochemical properties in the analysed gating-sensitive positions (accessible surface area, side-chain flexibility, and hydrophobicity) predict the shifts of the activation curves of Ca(V)1.2.


Assuntos
Canais de Cálcio Tipo L/fisiologia , Ativação do Canal Iônico/fisiologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Canais de Cálcio Tipo L/genética , Células Cultivadas , Análise Mutacional de DNA , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ativação do Canal Iônico/genética , Termodinâmica
2.
J Gen Physiol ; 134(3): 231-41; S1-2, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19687230

RESUMO

Point mutations in pore-lining S6 segments of CaV1.2 shift the voltage dependence of activation into the hyperpolarizing direction and significantly decelerate current activation and deactivation. Here, we analyze theses changes in channel gating in terms of a circular four-state model accounting for an activation R-A-O and a deactivation O-D-R pathway. Transitions between resting-closed (R) and activated-closed (A) states (rate constants x(V) and y(V)) and open (O) and deactivated-open (D) states (u(V) and w(V)) describe voltage-dependent sensor movements. Voltage-independent pore openings and closures during activation (A-O) and deactivation (D-R) are described by rate constants alpha and beta, and gamma and delta, respectively. Rate constants were determined for 16-channel constructs assuming that pore mutations in IIS6 do not affect the activating transition of the voltage-sensing machinery (x(V) and y(V)). Estimated model parameters of 15 CaV1.2 constructs well describe the activation and deactivation processes. Voltage dependence of the "pore-releasing" sensor movement ((x(V)) was much weaker than the voltage dependence of "pore-locking" sensor movement (y(V)). Our data suggest that changes in membrane voltage are more efficient in closing than in opening CaV1.2. The model failed to reproduce current kinetics of mutation A780P that was, however, accurately fitted with individually adjusted x(V) and y(V). We speculate that structural changes induced by a proline substitution in this position may disturb the voltage-sensing domain.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Ativação do Canal Iônico , Modelos Químicos , Canais de Cálcio Tipo L/química , Canais de Cálcio Tipo L/genética , Linhagem Celular , Glicina/genética , Humanos , Mutação , Técnicas de Patch-Clamp , Conformação Proteica
3.
J Biol Chem ; 284(18): 12276-84, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19265197

RESUMO

Voltage dependence and kinetics of Ca(V)1.2 activation are affected by structural changes in pore-lining S6 segments of the alpha(1)-subunit. Significant effects are induced by either proline or threonine substitutions in the lower third of segment IIS6 ("bundle crossing region"), where S6 segments are likely to seal the channel in the closed conformation (Hohaus, A., Beyl, S., Kudrnac, M., Berjukow, S., Timin, E. N., Marksteiner, R., Maw, M. A., and Hering, S. (2005) J. Biol. Chem. 280, 38471-38477). Here we report that S435P in IS6 results in a large shift of the activation curve (-25.9 +/- 1.2 mV) and slower current kinetics. Threonine substitutions at positions Leu-429 and Leu-434 induced a similar kinetic phenotype with shifted activation curves (L429T by -6.6 +/- 1.2 and L434T by -12.1 +/- 1.7 mV). Inactivation curves of all mutants were shifted to comparable extents as the activation curves. Interdependence of IS6 and IIS6 mutations was analyzed by means of mutant cycle analysis. Double mutations in segments IS6 and IIS6 induce either additive (L429T/I781T, -34.1 +/- 1.4 mV; L434T/I781T, -40.4 +/- 1.3 mV; L429T/L779T, -12.6 +/- 1.3 mV; and L434T/L779T, -22.4 +/- 1.3 mV) or nonadditive shifts of the activation curves along the voltage axis (S435P/I781T, -33.8 +/- 1.4 mV). Mutant cycle analysis revealed energetic coupling between residues Ser-435 and Ile-781, whereas other paired mutations in segments IS6 and IIS6 had independent effects on activation gating.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Ativação do Canal Iônico/fisiologia , Substituição de Aminoácidos , Animais , Canais de Cálcio Tipo L/genética , Humanos , Cinética , Mutação de Sentido Incorreto , Coelhos
4.
Channels (Austin) ; 2(2): 61-9, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18849656

RESUMO

Calcium channel family members activate at different membrane potentials, which enables tissue specific calcium entry. Pore mutations affecting this voltage dependence are associated with channelopathies. In this review we analyze the link between voltage sensitivity and corresponding kinetic phenotypes of calcium channel activation. Systematic changes in hydrophobicity in the lower third of S6 segments gradually shift the activation curve thereby determining the voltage sensitivity. Homology modeling suggests that hydrophobic residues that are located in all four S6 segments close to the inner channel mouth might form adhesion points stabilizing the closed gate. Simulation studies support a scenario where voltage sensors and the pore are essentially independent structural units. We speculate that evolution designed the voltage sensing machinery as robust "all-or-non" device while the varietys of voltage sensitivities of different channel types was accomplished by shaping pore stability.


Assuntos
Canais de Cálcio/química , Canais de Cálcio/fisiologia , Estabilidade Proteica , Animais , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ativação do Canal Iônico , Potenciais da Membrana
5.
Channels (Austin) ; 2(3): 216-23, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18836301

RESUMO

A channelopathy mutation in segment IIS6 of Ca(V)1.4 (I745T) has been shown to cause severe visual impairment by shifting the activation and inactivation curves to more hyperpolarized voltages and slowing activation and inactivation kinetics. A similar gating phenotype is caused by the corresponding mutation, I781T, in Ca(V)1.2 (midpoint of activation curve (V(0.5)) shifted to -37.7 +/- 1.2 mV). We show here that wild-type gating can partially be restored by a helix stabilizing rescue mutation N785A. V(0.5) of I781T/N785A (V(0.5) = -21.5 +/- 0.6 mV) was shifted back towards wild-type (V(0.5) = -9.9 +/- 1.1 mV). Homology models developed in our group (see accompanying article for details) were used to perform Molecular Dynamics-simulations (MD-simulations) on wild-type and mutant channels. Systematic changes in segment IIIS6 (M1187-F1194) and in helix IIS6 (N785-L786) were studied. The simulated structural changes in S6 segments of I781T/N785A were less pronounced than in I781T. A delicate balance between helix flexibility and stability enabling the formation of hydrophobic seals at the inner channel mouth appears to be important for wild-type Ca(V)1.2 gating. Our study illustrates that effects of mutations in the lower part of IIS6 may not be localized to the residue or even segment being mutated, but may affect conformations of interacting segments.


Assuntos
Canais de Cálcio Tipo L/química , Canais de Cálcio Tipo L/metabolismo , Linhagem Celular , Biologia Computacional/métodos , Simulação por Computador , Humanos , Íons , Potenciais da Membrana , Microscopia Confocal/métodos , Modelos Biológicos , Modelos Moleculares , Modelos Estatísticos , Conformação Molecular , Mutação , Estrutura Secundária de Proteína , Fatores de Tempo
6.
J Biol Chem ; 282(6): 3864-70, 2007 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-17138559

RESUMO

Voltage-gated calcium channels are in a closed conformation at rest and open temporarily when the membrane is depolarized. To gain insight into the molecular architecture of Ca(v)1.2, we probed the closed and open conformations with the charged phenylalkylamine (-)devapamil ((-)qD888). To elucidate the access pathway of (-)D888 to its binding pocket from the intracellular side, we used mutations replacing a highly conserved Ile-781 by threonine/proline in the pore-lining segment IIS6 of Ca(v)1.2 (1). The shifted channel gating of these mutants (by 30-40 mV in the hyperpolarizing direction) enabled us to evoke currents with identical kinetics at different potentials and thus investigate the effect of the membrane potentials on the drug access per se. We show here that under these conditions the development of channel block by (-)qD888 is not affected by the transmembrane voltage. Recovery from block at rest was, however, accelerated at more hyperpolarized voltages. These findings support the conclusion that Ca(v)1.2 must be opening widely to enable free access of the charged (-)D888 molecule to its binding site, whereas drug dissociation from the closed channel conformation is restricted by bulky channel gates. The functional data indicating a location of a trapped (-)D888 molecule close to the central pore region are supported by a homology model illustrating that the closed Ca(v)1.2 is able to accommodate a large cation such as (-)D888.


Assuntos
Canais de Cálcio Tipo L/química , Canais de Cálcio Tipo L/metabolismo , Ativação do Canal Iônico , Verapamil/análogos & derivados , Sítios de Ligação , Bloqueadores dos Canais de Cálcio/química , Bloqueadores dos Canais de Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/fisiologia , Linhagem Celular , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Ligação Proteica , Conformação Proteica , Eletricidade Estática , Verapamil/química , Verapamil/metabolismo , Verapamil/farmacologia
7.
J Biol Chem ; 280(46): 38471-7, 2005 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-16157588

RESUMO

The mechanism of channel opening for voltage-gated calcium channels is poorly understood. The importance of a conserved isoleucine residue in the pore-lining segment IIS6 has recently been highlighted by functional analyses of a mutation (I745T) in the Ca(V)1.4 channel causing severe visual impairment (Hemara-Wahanui, A., Berjukow, S., Hope, C. I., Dearden, P. K., Wu, S. B., Wilson-Wheeler, J., Sharp, D. M., Lundon-Treweek, P., Clover, G. M., Hoda, J. C., Striessnig, J., Marksteiner, R., Hering, S., and Maw, M. A. (2005) Proc. Natl. Acad. Sci. U. S. A. 102, 7553-7558). In the present study we analyzed the influence of amino acids in segment IIS6 on gating of the Ca(V)1.2 channel. Substitution of Ile-781, the Ca(V)1.2 residue corresponding to Ile-745 in Ca(V)1.4, by residues of different hydrophobicity, size and polarity shifted channel activation in the hyperpolarizing direction (I781P > I781T > I781N > I781A > I781L). As I781P caused the most dramatic shift (-37 mV), substitution with this amino acid was used to probe the role of other residues in IIS6 in the process of channel activation. Mutations revealed a high correlation between the midpoint voltages of activation and inactivation. A unique kinetic phenotype was observed for residues 779-782 (LAIA) located in the lower third of segment IIS6; a shift in the voltage dependence of activation was accompanied by a deceleration of activation at hyperpolarized potentials, a deceleration of deactivation at all potentials (I781P and I781T), and decreased inactivation. These findings indicate that Ile-781 substitutions both destabilize the closed conformation and stabilize the open conformation of Ca(V)1.2. Moreover there may be a flexible center of helix bending at positions 779-782 of Ca(V)1.2. These four residues are completely conserved in high voltage-activated calcium channels suggesting that these channels may share a common mechanism of gating.


Assuntos
Canais de Cálcio Tipo L/fisiologia , Doenças Retinianas/metabolismo , Éster Metílico do Ácido 3-Piridinacarboxílico, 1,4-Di-Hidro-2,6-Dimetil-5-Nitro-4-(2-(Trifluormetil)fenil)/farmacologia , Sequência de Aminoácidos , Arginina/química , Bário/metabolismo , Cálcio/química , Canais de Cálcio Tipo L/química , Linhagem Celular , Proteínas de Fluorescência Verde/metabolismo , Humanos , Íons , Isoleucina/química , Cinética , Potenciais da Membrana , Microscopia Confocal , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Fenótipo , Conformação Proteica , Estrutura Terciária de Proteína , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...