Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JVS Vasc Sci ; 1: 42-56, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32754721

RESUMO

OBJECTIVE: The arteriovenous fistula (AVF) is the preferred method of dialysis access because of its proven superior long-term outcomes.However, women havelower rates of AVF patency andutilizationthan men.We used a novel mouseAVF model that recapitulates human AVF maturation to determine whether there are differences in AVF patency in female and male mice. METHODS: Aortocaval fistulas were created in female and male C57BL/6 mice (9-10 weeks). At days 0, 3, 7, and 21, infrarenal inferior vena cava (IVC) and aortic diameters and flow velocity were monitored by Doppler ultrasound and used to calculate the vessel diameter, blood flow, and shear stress. AVF were harvested, and expression of proteins was examined by proteomic analysis and immunofluorescence and of messenger RNA by quantitative polymerase chain reaction analysis. RESULTS: At baseline, female mice weighed less and had lower IVC velocity and smaller magnitudes of shear stress, but there was no significant difference in IVC diameter and thickness. After AVF creation, both female and male mice had similar IVC dilation and thickening with no significant differences in IVC wall thickness at day 21. However, female mice had diminished AVF patency by day 42 (25.7% vs 64.3%; P = .039). During fistula remodeling, female mice had lower IVC mean velocity and shear stress magnitude and increased spectral broadening (days 0-21). Messenger RNA and protein expression of Krüppel-like factor 2, endothelial nitric oxide synthase, and vascular cell adhesion molecule 1 was similar at baseline in female and male mice but increased in the AVF only in male mice but not in female mice (day 21). Proteomic analysis of female and male mice detected 56 proteins expressed at significantly higher levels in the IVC of female mice and 67 proteins expressed at significantly higher levels in the IVC of male mice (day 7); function-specific analysis showed that the IVC of male mice overexpressed proteins that belong to pathways implicated in the regulation of vascular function, thrombosis, response to flow, and vascular remodeling. CONCLUSIONS: AVF in female mice have diminished patency, preceded by lower velocity, reduced magnitudes of shear stress, and less laminar flow during remodeling. There is also sex-specific differential expression of proteins involved in thrombosis, response to laminar flow, inflammation, and proliferation. These findings suggest that hemodynamic changes during fistula maturation may play an important role underlying the diminished rates of AVF utilization in women. CLINICAL RELEVANCE: Women have lower rates of arteriovenous fistula (AVF) utilization than men. Using a mouse AVF model that recapitulates human AVF maturation, we show that female mice have similar AVF remodeling but diminished patency. AVF remodeling in female mice is associated with reduced shear stress and laminar flow; lack of increased transcription and translation of several anti-inflammatory, antiproliferative, and laminar flow response proteins (endothelial nitric oxide synthase, Krüppel-like factor 2, and vascular cell adhesion molecule 1); and different patterns of expression of pathways that regulate thrombosis and venous remodeling. Identifying downstream targets involved in these mechanisms may improve AVF outcomes in female patients.

2.
Cell Stress Chaperones ; 23(5): 1101-1115, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29808299

RESUMO

Numerous putative heat shock protein 90 (Hsp90)-interacting proteins, which could represent novel folding clients or co-chaperones, have been identified in recent years. Two separate high-throughput screens in yeast uncovered genetic effects between Hsp90 and components of the ER membrane complex (EMC), which is required for tolerance to unfolded protein response stress in yeast. Herein, we provide the first experimental evidence supporting that there is a genuine interaction of Hsp90 with the EMC. We demonstrate genetic interactions between EMC2 and the known Hsp90 co-chaperone encoded by STI1, as well as Hsp90 point mutant allele-specific differences in inherent growth and Hsp90 inhibitor tolerance in the absence and presence of EMC2. In co-precipitation experiments, Hsp90 interacts with Emc2p, whether or not Emc2p contains amino acid sequences designated as a tetratricopeptide repeat motif. Yeast with multiple EMC gene deletions exhibit increased sensitivity to Hsp90 inhibitor as well as defective folding of the well-established Hsp90 folding client, the glucocorticoid receptor. Altogether, our evidence of physical, genetic, and functional interaction of Hsp90 with the EMC, as well as bioinformatic analysis of shared interactors, supports that there is a legitimate interaction between them in vivo.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Deleção de Genes , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico/genética , Membranas Intracelulares/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
3.
Investig Clin Urol ; 58(Suppl 2): S99-S106, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29279882

RESUMO

Underactive bladder (UAB) is a term used to describe a constellation of symptoms that is perceived by patients suggesting bladder hypocontractility. Urodynamic measurement that suggest decreased contractility of the bladder is termed detrusor underactivity (DUA). Regulatory approved specific management options with clinically proven ability to increase bladder contractility do not currently exist. While DUA specific treatments presumably will focus on methods to increase efficiency of bladder emptying capability relying on augmenting the motor pathway in the micturition reflex, other approaches include methods to augment the sensory (afferent) contribution to the micturition reflex which could result in increased detrusor contractility. Another method to induce more efficient bladder emptying could be to induce relaxation of the bladder outlet. Using cellular regenerative techniques, the detrusor smooth muscle can be targeted so the result is to increase detrusor smooth muscle function. In this review, we will cover areas of potential new therapies for DUA including: drug therapy, stem cells and regenerative therapies, neuromodulation, and urethral flow assist device. Paralleling development of new therapies, there also needs to be clinical studies performed that address how DUA relates to UAB.


Assuntos
Bexiga Inativa , Bexiga Urinária , Humanos , Contração Muscular/efeitos dos fármacos , Terapias em Estudo , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/fisiopatologia , Bexiga Inativa/tratamento farmacológico , Bexiga Inativa/fisiopatologia , Urodinâmica/efeitos dos fármacos
4.
Ann Vasc Dis ; 10(1): 8-16, 2017 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-29034014

RESUMO

Autogenous vein grafts remain the gold standard conduit for arterial bypass, particularly for the treatment of critical limb ischemia. Vein graft adaptation to the arterial environment, i.e., adequate dilation and wall thickening, contributes to the superior performance of vein grafts. However, abnormal venous wall remodeling with excessive neointimal hyperplasia commonly causes vein graft failure. Since the PREVENT trials failed to improve vein graft outcomes, new strategies focus on the adaptive response of the venous endothelial cells to the post-surgical arterial environment. Eph-B4, the determinant of venous endothelium during embryonic development, remains expressed and functional in adult venous tissue. After surgery, vein grafts lose their venous identity, with loss of Eph-B4 expression; however, arterial identity is not gained, consistent with loss of all vessel identity. In mouse vein grafts, stimulation of venous Eph-B4 signaling promotes retention of venous identity in endothelial cells and is associated with vein graft walls that are not thickened. Eph-B4 regulates downstream signaling pathways of relevance to vascular biology, including caveolin-1, Akt, and endothelial nitric oxide synthase (eNOS). Regulation of the Eph-B4 signaling pathway may be a novel therapeutic target to prevent vein graft failure.

5.
J Biomed Mater Res A ; 105(12): 3422-3431, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28877393

RESUMO

Polyester is commonly used in vascular surgery for patch angioplasty and grafts. We hypothesized that polyester patches heal by infiltration of arterial or venous progenitor cells depending on the site of implantation. Polyester patches were implanted into the Wistar rat aorta or inferior vena cava and explanted on day 7 or 30. Neointima that formed on polyester patches was thicker in the venous environment compared to the amount that formed on patches in the arterial environment. Venous patches had more cell proliferation and greater numbers of VCAM-positive and CD68-positive cells, whereas arterial patches had greater numbers of vimentin-positive and alpha-actin-positive cells. Although there were similar numbers of endothelial progenitor cells in the neointimal endothelium, cells in the arterial patch were Ephrin-B2- and notch-4-positive while those in the venous patch were Eph-B4- and COUP-TFII-positive. Venous patches treated with an arteriovenous fistula had decreased neointimal thickness; neointimal endothelial cells expressed Ephrin-B2 and notch-4 in addition to Eph-B4 and COUP-TFII. Polyester patches in the venous environment acquire venous identity, whereas patches in the arterial environment acquire arterial identity; patches in the fistula environment acquire dual arterial-venous identity. These data suggest that synthetic patches heal by acquisition of identity of their environment. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3422-3431, 2017.


Assuntos
Aorta/citologia , Prótese Vascular/efeitos adversos , Neointima/etiologia , Poliésteres/efeitos adversos , Veia Cava Inferior/citologia , Angioplastia/efeitos adversos , Animais , Aorta/patologia , Aorta/cirurgia , Velocidade do Fluxo Sanguíneo , Proliferação de Células , Células Progenitoras Endoteliais/citologia , Células Progenitoras Endoteliais/patologia , Masculino , Neointima/patologia , Ratos Wistar , Veia Cava Inferior/patologia , Veia Cava Inferior/cirurgia
6.
Semin Vasc Surg ; 29(4): 153-171, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28779782

RESUMO

With the increasing prevalence of end-stage renal disease, there is a growing need for hemodialysis. Arteriovenous fistulae (AVF) are the preferred type of vascular access for hemodialysis, but maturation and failure continue to present significant barriers to successful fistula use. AVF maturation integrates outward remodeling with vessel wall thickening in response to drastic hemodynamic changes in the setting of uremia, systemic inflammation, oxidative stress, and pre-existent vascular pathology. AVF can fail due to both failure to mature adequately to support hemodialysis and development of neointimal hyperplasia that narrows the AVF lumen, typically near the fistula anastomosis. Failure due to neointimal hyperplasia involves vascular cell activation and migration and extracellular matrix remodeling with complex interactions of growth factors, adhesion molecules, inflammatory mediators, and chemokines, all of which result in maladaptive remodeling. Different strategies have been proposed to prevent and treat AVF failure based on current understanding of the modes and pathology of access failure; these approaches range from appropriate patient selection and use of alternative surgical strategies for fistula creation, to the use of novel interventional techniques or drugs to treat failing fistulae. Effective treatments to prevent or treat AVF failure require a multidisciplinary approach involving nephrologists, vascular surgeons, and interventional radiologists, careful patient selection, and the use of tailored systemic or localized interventions to improve patient-specific outcomes. This review provides contemporary information on the underlying mechanisms of AVF maturation and failure and discusses the broad spectrum of options that can be tailored for specific therapy.


Assuntos
Derivação Arteriovenosa Cirúrgica/métodos , Oclusão de Enxerto Vascular/terapia , Falência Renal Crônica/terapia , Diálise Renal , Derivação Arteriovenosa Cirúrgica/efeitos adversos , Oclusão de Enxerto Vascular/etiologia , Oclusão de Enxerto Vascular/fisiopatologia , Humanos , Falência Renal Crônica/diagnóstico , Falência Renal Crônica/epidemiologia , Prevalência , Fatores de Risco , Falha de Tratamento , Grau de Desobstrução Vascular
7.
Science ; 337(6097): 980-4, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22859820

RESUMO

The synaptic adhesion molecules neurexin and neuroligin alter the development and function of synapses and are linked to autism in humans. Here, we found that Caenorhabditis elegans neurexin (NRX-1) and neuroligin (NLG-1) mediated a retrograde synaptic signal that inhibited neurotransmitter release at neuromuscular junctions. Retrograde signaling was induced in mutants lacking a muscle microRNA (miR-1) and was blocked in mutants lacking NLG-1 or NRX-1. Release was rapid and abbreviated when the retrograde signal was on, whereas release was slow and prolonged when retrograde signaling was blocked. The retrograde signal adjusted release kinetics by inhibiting exocytosis of synaptic vesicles (SVs) that are distal to the site of calcium entry. Inhibition of release was mediated by increased presynaptic levels of tomosyn, an inhibitor of SV fusion.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Moléculas de Adesão Celular Neuronais/metabolismo , Junção Neuromuscular/fisiologia , Transmissão Sináptica , Acetilcolina/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Moléculas de Adesão Celular Neuronais/genética , Neurônios Colinérgicos/fisiologia , Potenciais Pós-Sinápticos Excitadores , Exocitose , Cinética , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Neurônios Motores/fisiologia , Mutação , Inibição Neural , Neurotransmissores/metabolismo , Vesículas Sinápticas/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...