Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Biomed Eng ; 7(11): 1419-1436, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37749310

RESUMO

Small animals do not replicate the severity of the human foreign-body response (FBR) to implants. Here we show that the FBR can be driven by forces generated at the implant surface that, owing to allometric scaling, increase exponentially with body size. We found that the human FBR is mediated by immune-cell-specific RAC2 mechanotransduction signalling, independently of the chemistry and mechanical properties of the implant, and that a pathological FBR that is human-like at the molecular, cellular and tissue levels can be induced in mice via the application of human-tissue-scale forces through a vibrating silicone implant. FBRs to such elevated extrinsic forces in the mice were also mediated by the activation of Rac2 signalling in a subpopulation of mechanoresponsive myeloid cells, which could be substantially reduced via the pharmacological or genetic inhibition of Rac2. Our findings provide an explanation for the stark differences in FBRs observed in small animals and humans, and have implications for the design and safety of implantable devices.


Assuntos
Reação a Corpo Estranho , Mecanotransdução Celular , Camundongos , Humanos , Animais , Próteses e Implantes , Células Mieloides/patologia , Transdução de Sinais
2.
Front Med (Lausanne) ; 10: 1060758, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36999070

RESUMO

Introduction: According to the American Diabetes Association (ADA), 9-12 million patients suffer from chronic ulceration each year, costing the healthcare system over USD $25 billion annually. There is a significant unmet need for new and efficacious therapies to accelerate closure of non-healing wounds. Nitric Oxide (NO) levels typically increase rapidly after skin injury in the inflammatory phase and gradually diminish as wound healing progresses. The effect of increased NO concentration on promoting re-epithelization and wound closure has yet to be described in the context of diabetic wound healing. Methods: In this study, we investigated the effects of local administration of an NO-releasing gel on excisional wound healing in diabetic mice. The excisional wounds of each mouse received either NO-releasing gel or a control phosphate-buffered saline (PBS)-releasing gel treatment twice daily until complete wound closure. Results: Topical administration of NO-gel significantly accelerated the rate of wound healing as compared with PBS-gel-treated mice during the later stages of healing. The treatment also promoted a more regenerative ECM architecture resulting in shorter, less dense, and more randomly aligned collagen fibers within the healed scars, similar to that of unwounded skin. Wound healing promoting factors fibronectin, TGF-ß1, CD31, and VEGF were significantly elevated in NO vs. PBS-gel-treated wounds. Discussion: The results of this work may have important clinical implications for the management of patients with non-healing wounds.

3.
Nat Commun ; 12(1): 5256, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489407

RESUMO

Tissue repair and healing remain among the most complicated processes that occur during postnatal life. Humans and other large organisms heal by forming fibrotic scar tissue with diminished function, while smaller organisms respond with scarless tissue regeneration and functional restoration. Well-established scaling principles reveal that organism size exponentially correlates with peak tissue forces during movement, and evolutionary responses have compensated by strengthening organ-level mechanical properties. How these adaptations may affect tissue injury has not been previously examined in large animals and humans. Here, we show that blocking mechanotransduction signaling through the focal adhesion kinase pathway in large animals significantly accelerates wound healing and enhances regeneration of skin with secondary structures such as hair follicles. In human cells, we demonstrate that mechanical forces shift fibroblasts toward pro-fibrotic phenotypes driven by ERK-YAP activation, leading to myofibroblast differentiation and excessive collagen production. Disruption of mechanical signaling specifically abrogates these responses and instead promotes regenerative fibroblast clusters characterized by AKT-EGR1.


Assuntos
Indóis/farmacologia , Mecanotransdução Celular/fisiologia , Pele/lesões , Sulfonamidas/farmacologia , Cicatrização/fisiologia , Animais , Diferenciação Celular , Células Cultivadas , Colágeno/metabolismo , Feminino , Fibroblastos , Quinase 1 de Adesão Focal/antagonistas & inibidores , Quinase 1 de Adesão Focal/metabolismo , Regeneração Tecidual Guiada , Humanos , Indóis/sangue , Mecanotransdução Celular/efeitos dos fármacos , Análise de Sequência de RNA , Análise de Célula Única , Pele/efeitos dos fármacos , Pele/patologia , Fenômenos Fisiológicos da Pele , Estresse Mecânico , Sulfonamidas/sangue , Suínos , Cicatrização/efeitos dos fármacos
4.
Plast Reconstr Surg Glob Open ; 8(9): e3136, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33133975

RESUMO

Hyperbaric oxygen therapy (HBOT) serves as "primary" or "adjunctive" therapy in a wide range of pathologies. It is considered the mainstay of management for potentially life-threatening conditions such as carbon monoxide poisoning, decompression illness, and gas embolisms. Moreover, HBOT has been utilized for decades as an adjunctive therapy in a variety of medical disciplines, including chronic wounds, which affect approximately 6.5 million Americans annually. In general, chronic wounds are characterized by hypoxia, impaired angiogenesis, and prolonged inflammation, all of which may theoretically be ameliorated by HBOT. Nonetheless, the cellular, biochemical, and physiological mechanisms by which HBOT achieves beneficial results in chronic wounds are not fully understood, and there remains significant skepticism regarding its efficacy. This review article provides a comprehensive overview of HBOT, and discusses its history, mechanisms of action, and its implications in management of chronic wounds. In particular, we discuss the current evidence regarding the use of HBOT in diabetic foot ulcers, while digging deeply into the roots of controversy surrounding its efficacy. We discuss how the paucity of high-quality research is a tremendous challenge, and offer future direction to address existing obstacles.

5.
Mol Ther ; 28(9): 2007-2022, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32531238

RESUMO

Intravenous infusion of mesenchymal stromal cells (MSCs) is thought to be a viable treatment for numerous disorders. Although the intrinsic immunosuppressive ability of MSCs has been credited for this therapeutic effect, their exact impact on endogenous tissue-resident cells following delivery has not been clearly characterized. Moreover, multiple studies have reported pulmonary sequestration of MSCs upon intravenous delivery. Despite substantial efforts to improve MSC homing, it remains unclear whether MSC migration to the site of injury is necessary to achieve a therapeutic effect. Using a murine excisional wound healing model, we offer an explanation of how sequestered MSCs improve healing through their systemic impact on macrophage subpopulations. We demonstrate that infusion of MSCs leads to pulmonary entrapment followed by rapid clearance, but also significantly accelerates wound closure. Using single-cell RNA sequencing of the wound, we show that following MSC delivery, innate immune cells, particularly macrophages, exhibit distinctive transcriptional changes. We identify the appearance of a pro-angiogenic CD9+ macrophage subpopulation, whose induction is mediated by several proteins secreted by MSCs, including COL6A1, PRG4, and TGFB3. Our findings suggest that MSCs do not need to act locally to induce broad changes in the immune system and ultimately treat disease.


Assuntos
Macrófagos Alveolares/imunologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/imunologia , Transcrição Gênica/genética , Cicatrização/imunologia , Animais , Modelos Animais de Doenças , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Infusões Intravenosas/métodos , Macrófagos Alveolares/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Células RAW 264.7 , RNA-Seq/métodos , Análise de Célula Única/métodos , Tetraspanina 29/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...