Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 12: 684430, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34140954

RESUMO

Microglia, the innate immune cells of the brain, are essential for maintaining homeostasis by their ramified, highly motile processes and for orchestrating the immune response to pathological stimuli. They are implicated in several neurodegenerative diseases like Alzheimer's and Parkinson's disease. One commonality of these diseases is their strong correlation with aging as the highest risk factor and studying age-related alterations in microglia physiology and associated signaling mechanism is indispensable for a better understanding of age-related pathomechanisms. CD22 has been identified as a modifier of microglia phagocytosis in a recent study, but not much is known about the function of CD22 in microglia. Here we show that CD22 surface levels are upregulated in aged versus adult microglia. Furthermore, in the amyloid mouse model PS2APP, Aß-containing microglia also exhibit increased CD22 signal. To assess the impact of CD22 blockage on microglia morphology and dynamics, we have established a protocol to image microglia process motility in acutely prepared brain slices from CX3CR1-GFP reporter mice. We observed a significant reduction of microglial ramification and surveillance capacity in brain slices from aged versus adult mice. The age-related decrease in surveillance can be restored by antibody-mediated CD22 blockage in aged mice, whereas surveillance in adult mice is not affected by CD22 inhibition. Moreover to complement the results obtained in mice, we show that human iPSC-derived macrophages exhibit an increased phagocytic capacity upon CD22 blockage. Downstream analysis of antibody-mediated CD22 inhibition revealed an influence on BMP and TGFß associated gene networks. Our results demonstrate CD22 as a broad age-associated modulator of microglia functionality with potential implications for neurodegenerative disorders.


Assuntos
Envelhecimento/fisiologia , Encéfalo/citologia , Microglia/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/antagonistas & inibidores , Envelhecimento/efeitos dos fármacos , Envelhecimento/genética , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Contagem de Células , Modelos Animais de Doenças , Humanos , Macrófagos/metabolismo , Masculino , Camundongos , Microglia/citologia , Fagocitose/genética , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Transdução de Sinais
2.
J Hepatol ; 68(3): 412-420, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29079285

RESUMO

BACKGROUND & AIMS: The hallmarks of chronic HBV infection are a high viral load (HBV DNA) and even higher levels (>100-fold in excess of virions) of non-infectious membranous particles containing the tolerogenic viral S antigen (HBsAg). Currently, standard treatment effectively reduces viremia but only rarely results in a functional cure (defined as sustained HBsAg loss). There is an urgent need to identify novel therapies that reduce HBsAg levels and restore virus-specific immune responsiveness in patients. We report the discovery of a novel, potent and orally bioavailable small molecule inhibitor of HBV gene expression (RG7834). METHODS: RG7834 antiviral characteristics and selectivity against HBV were evaluated in HBV natural infection assays and in a urokinase-type plasminogen activator/severe combined immunodeficiency humanized mouse model of HBV infection, either alone or in combination with entecavir. RESULTS: Unlike nucleos(t)ide therapies, which reduce viremia but do not lead to an effective reduction in HBV antigen expression, RG7834 significantly reduced the levels of viral proteins (including HBsAg), as well as lowering viremia. Consistent with its proposed mechanism of action, time course RNA-seq analysis revealed a fast and selective reduction in HBV mRNAs in response to RG7834 treatment. Furthermore, oral treatment of HBV-infected humanized mice with RG7834 led to a mean HBsAg reduction of 1.09 log10 compared to entecavir, which had no significant effect on HBsAg levels. Combination of RG7834, entecavir and pegylated interferon α-2a led to significant reductions of both HBV DNA and HBsAg levels in humanized mice. CONCLUSION: We have identified a novel oral HBV viral gene expression inhibitor that blocks viral antigen and virion production, that is highly selective for HBV, and has a unique antiviral profile that is clearly differentiated from nucleos(t)ide analogues. LAY SUMMARY: We discovered a novel small molecule viral expression inhibitor that is highly selective for HBV and unlike current therapy inhibits the expression of viral proteins by specifically reducing HBV mRNAs. RG7834 can therefore potentially provide anti-HBV benefits and increase HBV cure rates, by direct reduction of viral agents needed to complete the viral life cycle, as well as a reduction of viral agents involved in evasion of the host immune responses.


Assuntos
Antivirais , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Vírus da Hepatite B , Hepatite B Crônica , Bibliotecas de Moléculas Pequenas , Administração Oral , Animais , Antivirais/administração & dosagem , Antivirais/efeitos adversos , Antivirais/farmacocinética , Disponibilidade Biológica , DNA Viral/isolamento & purificação , Modelos Animais de Doenças , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/genética , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/virologia , Camundongos , Bibliotecas de Moléculas Pequenas/administração & dosagem , Bibliotecas de Moléculas Pequenas/efeitos adversos , Bibliotecas de Moléculas Pequenas/farmacocinética , Resultado do Tratamento , Carga Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...