Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 42(5): 995-1009, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36861220

RESUMO

Degradation of the fungicide benzovindiflupyr was slow in standard regulatory laboratory studies in soil and aquatic systems, suggesting it is a persistent molecule. However, the conditions in these studies differed significantly from actual environmental conditions, particularly the exclusion of light, which prevents potential contributions from the phototrophic microorganisms that are ubiquitous in both aquatic and terrestrial environments. Higher tier laboratory studies that include a more comprehensive range of degradation processes can more accurately describe environmental fate under field conditions. Indirect aqueous photolysis studies with benzovindiflupyr showed that the photolytic half-life in natural surface water can be as short as 10 days, compared with 94 days in pure buffered water. Inclusion of a light-dark cycle in higher tier aquatic metabolism studies, to include the contribution of phototrophic organisms, reduced the total system half-life from >1 year in dark test systems to as little as 23 days. The relevance of these additional processes was confirmed in an outdoor aquatic microcosm study in which the half-life of benzovindiflupyr was 13-58 days. In laboratory soil degradation studies, the degradation rate of benzovindiflupyr was significantly faster in cores with an undisturbed surface microbiotic crust, incubated in a light-dark cycle (half-life of 35 days), than in regulatory studies with sieved soil in the dark (half-life >1 year). A radiolabeled field study validated these observations, showing residue decline with a half-life of approximately 25 days over the initial 4 weeks. Conceptual models of environmental fate based on standard regulatory studies may be incomplete, and additional higher tier laboratory studies can be valuable in elucidating degradation processes and improving the prediction of persistence under actual use conditions. Environ Toxicol Chem 2023;42:995-1009. © 2023 SETAC.


Assuntos
Fungicidas Industriais , Poluentes Químicos da Água , Fungicidas Industriais/toxicidade , Norbornanos , Água , Solo/química , Poluentes Químicos da Água/análise
2.
Environ Toxicol Chem ; 34(10): 2236-43, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26010776

RESUMO

Soil surface photolysis can be a significant dissipation pathway for agrochemicals under field conditions, although it is assumed that such degradation ceases once the agrochemical is transported away from the surface following rainfall or irrigation and subsequent drainage of soil porewater. However, as both downward and upward water movements occur under field conditions, relatively mobile compounds may return to the surface, prolonging exposure to ultraviolet light and increasing the potential for degradation by photolysis. To test this hypothesis, a novel experimental system was used to quantify the contribution of photolysis to the overall dissipation of a new herbicide, bicyclopyrone, under conditions that mimicked field studies more closely than the standard laboratory test guidance. Soil cores were taken from 3 US field study sites, and the surfaces were treated with [(14) C]-bicyclopyrone. The radioactivity was redistributed throughout the cores using a simulated rainfall event, following which the cores were incubated under a xenon-arc lamp with continuous provision of moisture from below and a wind simulator to induce evaporation. After only 2 d, most of the test compound had returned to the soil surface. Significantly more degradation was observed in the irradiated samples than in a parallel dark control sample. Degradation rates were very similar to those observed in both the thin layer photolysis study and the field dissipation studies and significantly faster than in the soil metabolism studies conducted in the dark. Thus, for highly soluble, mobile agrochemicals, such as bicyclopyrone, photolysis is not terminated permanently by rainfall or irrigation but can resume following transport to the surface in evaporating water.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/análise , Pironas/análise , Poluentes do Solo/análise , Solo/química , Radioisótopos de Carbono/química , Cromatografia Líquida de Alta Pressão , Herbicidas/análise , Laboratórios , Luz , Fotólise/efeitos da radiação , Pironas/química , Poluentes do Solo/química , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA