Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
bioRxiv ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38014122

RESUMO

By driving monocyte chemotaxis, the chemokine receptor CCR2 shapes inflammatory responses and the formation of tumor microenvironments. This makes it a promising target in inflammation and immuno-oncology; however, despite extensive efforts, there are no FDA-approved CCR2-targeting therapeutics. Cited challenges include the redundancy of the chemokine system, suboptimal properties of compound candidates, and species differences that confound the translation of results from animals to humans. Structure-based drug design can rationalize and accelerate the discovery and optimization of CCR2 antagonists to address these challenges. The prerequisites for such efforts include an atomic-level understanding of the molecular determinants of action of existing antagonists. In this study, using molecular docking and artificial-intelligence-powered compound library screening, we uncover the structural principles of small molecule antagonism and selectivity towards CCR2 and its sister receptor CCR5. CCR2 orthosteric inhibitors are shown to universally occupy an inactive-state-specific tunnel between receptor helices 1 and 7; we also discover an unexpected role for an extra-helical groove accessible through this tunnel, suggesting its potential as a new targetable interface for CCR2 and CCR5 modulation. By contrast, only shape complementarity and limited helix 8 hydrogen bonding govern the binding of various chemotypes of allosteric antagonists. CCR2 residues S1012.63 and V2446.36 are implicated as determinants of CCR2/CCR5 and human/mouse orthosteric and allosteric antagonist selectivity, respectively, and the role of S1012.63 is corroborated through experimental gain-of-function mutagenesis. We establish a critical role of induced fit in antagonist recognition, reveal strong chemotype selectivity of existing structures, and demonstrate the high predictive potential of a new deep-learning-based compound scoring function. Finally, this study expands the available CCR2 structural landscape with computationally generated chemotype-specific models well-suited for structure-based antagonist design.

2.
bioRxiv ; 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37961097

RESUMO

CC chemokine receptor 5 (CCR5) contributes to inflammatory responses by driving cell migration and scavenging chemokine to shape directional chemokine gradients. A drug against CCR5 has been approved for blocking HIV entry into cells. However, targeting CCR5 for the treatment of inflammatory diseases and cancer has had limited success because of the complex biology and pharmacology of this receptor. CCR5 is activated by many natural and engineered chemokines that elicit distinct receptor signaling and trafficking responses, including some that sequester the receptor inside the cell. The sequestration phenomenon may be therapeutically exploitable, but the mechanisms by which different ligands traffic CCR5 to different cellular locations are poorly understood. Here we employed live cell ascorbic acid peroxidase proximity labeling and quantitative mass spectrometry proteomics for unbiased discovery of temporally resolved protein neighborhoods of CCR5 following stimulation with its endogenous agonist, CCL5, and two CCL5 variants that promote intracellular retention of the receptor. Along with targeted pharmacological assays, the data reveals distinct ligand-dependent CCR5 trafficking patterns with temporal resolution. All three chemokines internalize CCR5 via ß-arrestin- dependent, clathrin-mediated endocytosis but to different extents, with different kinetics and with varying dependencies on GPCR kinase subtypes. The agonists differ in their ability to target the receptor to lysosomes for degradation, as well as to the Golgi compartment and the trans-Golgi network, and these trafficking patterns translate into distinct levels of ligand scavenging. The results provide insight into the molecular mechanisms behind CCR5 intracellular sequestration and suggest actionable patterns for the development of chemokine-based CCR5 targeting molecules. Significance Statement: CCR5 plays a crucial role in the immune system and is important in numerous physiological and pathological processes such as inflammation, cancer and HIV transmission. Along with its functional diversity, different CCR5 ligands can induce distinct receptor signaling responses and trafficking behaviors; the latter includes intracellular receptor sequestration which offers a potential therapeutic strategy for inhibiting CCR5 function. Using time-resolved proximity labeling proteomics and targeted pharmacological experiments, this study reveals the molecular basis for receptor sequestration including information that can be exploited for the development of CCR5 targeting molecules that promote retention of the receptor inside the cell.

3.
BMC Bioinformatics ; 24(1): 246, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308855

RESUMO

BACKGROUND: Computational models of cell signaling networks are extremely useful tools for the exploration of underlying system behavior and prediction of response to various perturbations. By representing signaling cascades as executable Boolean networks, the previously developed rxncon ("reaction-contingency") formalism and associated Python package enable accurate and scalable modeling of signal transduction even in large (thousands of components) biological systems. The models are split into reactions, which generate states, and contingencies, that impinge on reactions; this avoids the so-called "combinatorial explosion" of system size. Boolean description of the biological system compensates for the poor availability of kinetic parameters which are necessary for quantitative models. Unfortunately, few tools are available to support rxncon model development, especially for large, intricate systems. RESULTS: We present the kboolnet toolkit ( https://github.com/Kufalab-UCSD/kboolnet , complete documentation at https://github.com/Kufalab-UCSD/kboolnet/wiki ), an R package and a set of scripts that seamlessly integrate with the python-based rxncon software and collectively provide a complete workflow for the verification, validation, and visualization of rxncon models. The verification script VerifyModel.R checks for responsiveness to repeated stimulations as well as consistency of steady state behavior. The validation scripts TruthTable.R, SensitivityAnalysis.R, and ScoreNet.R provide various readouts for the comparison of model predictions to experimental data. In particular, ScoreNet.R compares model predictions to a cloud-stored MIDAS-format experimental database to provide a numerical score for tracking model accuracy. Finally, the visualization scripts allow for graphical representations of model topology and behavior. The entire kboolnet toolkit is cloud-enabled, allowing for easy collaborative development; most scripts also allow for the extraction and analysis of individual user-defined "modules". CONCLUSION: The kboolnet toolkit provides a modular, cloud-enabled workflow for the development of rxncon models, as well as their verification, validation, and visualization. This will enable the creation of larger, more comprehensive, and more rigorous models of cell signaling using the rxncon formalism in the future.


Assuntos
Documentação , Transdução de Sinais , Bases de Dados Factuais , Cinética , Software
4.
Mol Biol Cell ; 34(9): ar93, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37223976

RESUMO

The α-arrestin ARRDC3 is a recently discovered tumor suppressor in invasive breast cancer that functions as a multifaceted adaptor protein to control protein trafficking and cellular signaling. However, the molecular mechanisms that control ARRDC3 function are unknown. Other arrestins are known to be regulated by posttranslational modifications, suggesting that ARRDC3 may be subject to similar regulatory mechanisms. Here we report that ubiquitination is a key regulator of ARRDC3 function and is mediated primarily by two proline-rich PPXY motifs in the ARRDC3 C-tail domain. Ubiquitination and the PPXY motifs are essential for ARRDC3 function in regulating GPCR trafficking and signaling. Additionally, ubiquitination and the PPXY motifs mediate ARRDC3 protein degradation, dictate ARRDC3 subcellular localization, and are required for interaction with the NEDD4-family E3 ubiquitin ligase WWP2. These studies demonstrate a role for ubiquitination in regulating ARRDC3 function and reveal a mechanism by which ARRDC3 divergent functions are controlled.


Assuntos
Arrestina , Arrestinas , Arrestina/metabolismo , Ubiquitinação , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Arrestinas/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo
5.
Sci Signal ; 16(770): eabo4314, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36719944

RESUMO

C-C chemokine receptor 2 (CCR2) is a dual-function receptor. Similar to other G protein-coupled chemokine receptors, it promotes monocyte infiltration into tissues in response to the chemokine CCL2, and, like atypical chemokine receptors (ACKRs), it scavenges chemokine from the extracellular environment. CCR2 therefore mediates CCL2-dependent signaling as a G protein-coupled receptor (GPCR) and also limits CCL2 signaling as a scavenger receptor. We investigated the mechanisms underlying CCR2 scavenging, including the involvement of intracellular proteins typically associated with GPCR signaling and internalization. Using CRISPR knockout cell lines, we showed that CCR2 scavenged by constitutively internalizing to remove CCL2 from the extracellular space and recycling back to the cell surface for further rounds of ligand sequestration. This process occurred independently of G proteins, GPCR kinases (GRKs), ß-arrestins, and clathrin, which is distinct from other "professional" chemokine scavenger receptors that couple to GRKs, ß-arrestins, or both. These findings set the stage for understanding the molecular regulators that determine CCR2 scavenging and may have implications for drug development targeting this therapeutically important receptor.


Assuntos
Quimiocinas , Receptores de Quimiocinas , Camundongos , Animais , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo , Camundongos Knockout , Quimiocinas/metabolismo , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , beta-Arrestinas/metabolismo , Receptores CCR2/genética , Receptores CCR2/metabolismo
6.
J Exp Med ; 218(7)2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33970188

RESUMO

Neuroinflammation is a major component in the transition to and perpetuation of neuropathic pain states. Spinal neuroinflammation involves activation of TLR4, localized to enlarged, cholesterol-enriched lipid rafts, designated here as inflammarafts. Conditional deletion of cholesterol transporters ABCA1 and ABCG1 in microglia, leading to inflammaraft formation, induced tactile allodynia in naive mice. The apoA-I binding protein (AIBP) facilitated cholesterol depletion from inflammarafts and reversed neuropathic pain in a model of chemotherapy-induced peripheral neuropathy (CIPN) in wild-type mice, but AIBP failed to reverse allodynia in mice with ABCA1/ABCG1-deficient microglia, suggesting a cholesterol-dependent mechanism. An AIBP mutant lacking the TLR4-binding domain did not bind microglia or reverse CIPN allodynia. The long-lasting therapeutic effect of a single AIBP dose in CIPN was associated with anti-inflammatory and cholesterol metabolism reprogramming and reduced accumulation of lipid droplets in microglia. These results suggest a cholesterol-driven mechanism of regulation of neuropathic pain by controlling the TLR4 inflammarafts and gene expression program in microglia and blocking the perpetuation of neuroinflammation.


Assuntos
Colesterol/metabolismo , Microglia/metabolismo , Neuralgia/metabolismo , Medula Espinal/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Transporte Biológico/fisiologia , Linhagem Celular , Células HEK293 , Humanos , Inflamação/metabolismo , Masculino , Microdomínios da Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica/fisiologia , Transdução de Sinais/fisiologia
7.
J Biol Chem ; 296: 100493, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33675748

RESUMO

PDZ domains are one of the most abundant protein domains in eukaryotes and are frequently found on junction-localized scaffold proteins. Various signaling molecules bind to PDZ proteins via PDZ-binding motifs (PBM) and fine-tune cellular signaling. However, how such interaction affects protein function is difficult to predict and must be solved empirically. Here we describe a long isoform of the guanine nucleotide exchange factor GIV/Girdin (CCDC88A) that we named GIV-L, which is conserved throughout evolution, from invertebrates to vertebrates, and contains a PBM. Unlike GIV, which lacks PBM and is cytosolic, GIV-L localizes onto cell junctions and has a PDZ interactome (as shown through annotating Human Cell Map and BioID-proximity labeling studies), which impacts GIV-L's ability to bind and activate trimeric G-protein, Gαi, through its guanine-nucleotide exchange modulator (GEM) module. This GEM module is found exclusively in vertebrates. We propose that the two functional modules in GIV may have evolved sequentially: the ability to bind PDZ proteins via the PBM evolved earlier in invertebrates, whereas G-protein binding and activation may have evolved later only among vertebrates. Phenotypic studies in Caco-2 cells revealed that GIV and GIV-L may have antagonistic effects on cell growth, proliferation (cell cycle), and survival. Immunohistochemical analysis in human colon tissues showed that GIV expression increases with a concomitant decrease in GIV-L during cancer initiation. Taken together, these findings reveal how regulation in GIV/CCDC88A transcript helps to achieve protein modularity, which allows the protein to play opposing roles either as a tumor suppressor (GIV-L) or as an oncogene (GIV).


Assuntos
Neoplasias do Colo/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral/fisiologia , Proliferação de Células , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Humanos , Proteínas dos Microfilamentos/química , Domínios PDZ , Fosforilação , Ligação Proteica , Isoformas de Proteínas , Transporte Proteico , Transdução de Sinais , Proteínas de Transporte Vesicular/química , Peixe-Zebra
10.
J Med Chem ; 64(5): 2608-2621, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33600174

RESUMO

Covalently acting inhibitors constitute a large and growing fraction of approved small-molecule therapeutics as well as useful tools for a variety of in vitro and in vivo applications. Here, we aimed to develop a covalent antagonist of CC chemokine receptor 2 (CCR2), a class A GPCR that has been pursued as a therapeutic target in inflammation and immuno-oncology. Based on a known intracellularly binding CCR2 antagonist, several covalent derivatives were synthesized and characterized by radioligand binding and functional assays. These studies revealed compound 14 as an intracellular covalent ligand for CCR2. In silico modeling followed by site-directed mutagenesis confirmed that 14 forms a covalent bond with one of three proximal cysteine residues, which can be engaged interchangeably. To our knowledge, compound 14 represents the first covalent ligand reported for CCR2. Due to its unique properties, it may represent a promising tool for ongoing and future studies of CCR2 pharmacology.


Assuntos
Receptores CCR2/antagonistas & inibidores , Sulfonamidas/farmacologia , Animais , Sítios de Ligação , Células CHO , Linhagem Celular Tumoral , Cricetulus , Cisteína/química , Desenho de Fármacos , Células HEK293 , Humanos , Ligantes , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica , Receptores CCR2/genética , Receptores CCR2/metabolismo , Sulfonamidas/síntese química , Sulfonamidas/metabolismo
11.
Proc Natl Acad Sci U S A ; 117(46): 28763-28774, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33139573

RESUMO

The molecular mechanisms by which receptor tyrosine kinases (RTKs) and heterotrimeric G proteins, two major signaling hubs in eukaryotes, independently relay signals across the plasma membrane have been extensively characterized. How these hubs cross-talk has been a long-standing question, but answers remain elusive. Using linear ion-trap mass spectrometry in combination with biochemical, cellular, and computational approaches, we unravel a mechanism of activation of heterotrimeric G proteins by RTKs and chart the key steps that mediate such activation. Upon growth factor stimulation, the guanine-nucleotide exchange modulator dissociates Gαi•ßγ trimers, scaffolds monomeric Gαi with RTKs, and facilitates the phosphorylation on two tyrosines located within the interdomain cleft of Gαi. Phosphorylation triggers the activation of Gαi and inhibits second messengers (cAMP). Tumor-associated mutants reveal how constitutive activation of this pathway impacts cell's decision to "go" vs. "grow." These insights define a tyrosine-based G protein signaling paradigm and reveal its importance in eukaryotes.


Assuntos
Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Células COS , Chlorocebus aethiops , Receptores ErbB/metabolismo , Células HEK293 , Células HeLa , Proteínas Heterotriméricas de Ligação ao GTP/fisiologia , Humanos , Fosforilação , Receptores Proteína Tirosina Quinases/fisiologia , Transdução de Sinais , Tirosina/metabolismo
12.
Proc Natl Acad Sci U S A ; 117(43): 26895-26906, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33055214

RESUMO

Sensing of pathogens by Toll-like receptor 4 (TLR4) induces an inflammatory response; controlled responses confer immunity but uncontrolled responses cause harm. Here we define how a multimodular scaffold, GIV (a.k.a. Girdin), titrates such inflammatory response in macrophages. Upon challenge with either live microbes or microbe-derived lipopolysaccharides (a ligand for TLR4), macrophages with GIV mount a more tolerant (hypo-reactive) transcriptional response and suppress proinflammatory cytokines and signaling pathways (i.e., NFkB and CREB) downstream of TLR4 compared to their GIV-depleted counterparts. Myeloid-specific gene-depletion studies confirmed that the presence of GIV ameliorates dextran sodium sulfate-induced colitis and sepsis-induced death. The antiinflammatory actions of GIV are mediated via its C-terminally located TIR-like BB-loop (TILL) motif which binds the cytoplasmic TIR modules of TLR4 in a manner that precludes receptor dimerization; such dimerization is a prerequisite for proinflammatory signaling. Binding of GIV's TILL motif to TIR modules inhibits proinflammatory signaling via other TLRs, suggesting a convergent paradigm for fine-tuning macrophage inflammatory responses.


Assuntos
Proteínas dos Microfilamentos/metabolismo , Receptor 4 Toll-Like/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Colite/metabolismo , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Células RAW 264.7 , Sepse/metabolismo , Transdução de Sinais
13.
Sci Signal ; 13(640)2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32665413

RESUMO

Because of their prominent roles in development, cancer, and HIV, the chemokine receptor CXCR4 and its ligand CXCL12 have been the subject of numerous structural and functional studies, but the determinants of ligand binding, selectivity, and signaling are still poorly understood. Here, building on our latest structural model, we used a systematic mutagenesis strategy to dissect the functional anatomy of the CXCR4-CXCL12 complex. Key charge swap mutagenesis experiments provided evidence for pairwise interactions between oppositely charged residues in the receptor and chemokine, confirming the accuracy of the predicted orientation of the chemokine relative to the receptor and providing insight into ligand selectivity. Progressive deletion of N-terminal residues revealed an unexpected contribution of the receptor N terminus to chemokine signaling. This finding challenges a longstanding "two-site" hypothesis about the essential features of the receptor-chemokine interaction in which the N terminus contributes only to binding affinity. Our results suggest that although the interaction of the chemokine N terminus with the receptor-binding pocket is the key driver of signaling, the signaling amplitude depends on the extent to which the receptor N terminus binds the chemokine. Together with systematic characterization of other epitopes, these data enable us to propose an experimentally consistent structural model for how CXCL12 binds CXCR4 and initiates signal transmission through the receptor transmembrane domain.


Assuntos
Quimiocina CXCL12/química , Modelos Moleculares , Complexos Multiproteicos/química , Receptores CXCR4/química , Animais , Células CHO , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Cricetulus , Células HEK293 , Humanos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutagênese Sítio-Dirigida , Estrutura Quaternária de Proteína , Receptores CXCR4/genética , Receptores CXCR4/metabolismo
14.
J Leukoc Biol ; 107(6): 1123-1135, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32374043

RESUMO

Chemokines play critical roles in numerous physiologic and pathologic processes through their action on seven-transmembrane (TM) receptors. The N-terminal domain of chemokines, which is a key determinant of signaling via its binding within a pocket formed by receptors' TM helices, can be the target of proteolytic processing. An illustrative case of this regulatory mechanism is the natural processing of CXCL12 that generates chemokine variants lacking the first two N-terminal residues. Whereas such truncated variants behave as antagonists of CXCR4, the canonical G protein-coupled receptor of CXCL12, they are agonists of the atypical chemokine receptor 3 (ACKR3/CXCR7), suggesting the implication of different structural determinants in the complexes formed between CXCL12 and its two receptors. Recent analyses have suggested that the CXCL12 N-terminus first engages the TM helices of ACKR3 followed by the receptor N-terminus wrapping around the chemokine core. Here we investigated the first stage of ACKR3-CXCL12 interactions by comparing the activity of substituted or N-terminally truncated variants of CXCL12 toward CXCR4 and ACKR3. We showed that modification of the first two N-terminal residues of the chemokine (K1R or P2G) does not alter the ability of CXCL12 to activate ACKR3. Our results also identified the K1R variant as a G protein-biased agonist of CXCR4. Comparative molecular dynamics simulations of the complexes formed by ACKR3 either with CXCL12 or with the P2G variant identified interactions between the N-terminal 2-4 residues of CXCL12 and a pocket formed by receptor's TM helices 2, 6, and 7 as critical determinants for ACKR3 activation.


Assuntos
Quimiocina CXCL12/química , AMP Cíclico/química , Receptores CXCR4/química , Receptores CXCR/química , Sequência de Aminoácidos , Benzilaminas , Sítios de Ligação , Quimiocina CXCL11/química , Quimiocina CXCL11/genética , Quimiocina CXCL11/metabolismo , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Ciclamos , AMP Cíclico/metabolismo , Expressão Gênica , Células HEK293 , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Humanos , Simulação de Dinâmica Molecular , Mutação , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Receptores CXCR/genética , Receptores CXCR/metabolismo , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , beta-Arrestinas/genética , beta-Arrestinas/metabolismo
15.
PLoS Biol ; 18(4): e3000656, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32271748

RESUMO

Chemokines and their receptors are orchestrators of cell migration in humans. Because dysregulation of the receptor-chemokine system leads to inflammation and cancer, both chemokines and receptors are highly sought therapeutic targets. Yet one of the barriers for their therapeutic targeting is the limited understanding of the structural principles behind receptor-chemokine recognition and selectivity. The existing structures do not include CXC subfamily complexes and lack information about the receptor distal N-termini, despite the importance of the latter in signaling, regulation, and bias. Here, we report the discovery of the geometry of the complex between full-length CXCR4, a prototypical CXC receptor and driver of cancer metastasis, and its endogenous ligand CXCL12. By comprehensive disulfide cross-linking, we establish the existence and the structure of a novel interface between the CXCR4 distal N-terminus and CXCL12 ß1-strand, while also recapitulating earlier findings from nuclear magnetic resonance, modeling and crystallography of homologous receptors. A cross-linking-informed high-resolution model of the CXCR4-CXCL12 complex pinpoints the interaction determinants and reveals the occupancy of the receptor major subpocket by the CXCL12 proximal N terminus. This newly found positioning of the chemokine proximal N-terminus provides a structural explanation of CXC receptor-chemokine selectivity against other subfamilies. Our findings challenge the traditional two-site understanding of receptor-chemokine recognition, suggest the possibility of new affinity and signaling determinants, and fill a critical void on the structural map of an important class of therapeutic targets. These results will aid the rational design of selective chemokine-receptor targeting small molecules and biologics with novel pharmacology.


Assuntos
Quimiocina CXCL12/química , Quimiocina CXCL12/metabolismo , Receptores CXCR4/química , Receptores CXCR4/metabolismo , Animais , Sítios de Ligação , Western Blotting , Quimiocina CXCL12/genética , Cisteína/química , Cisteína/genética , Dissulfetos/química , Citometria de Fluxo , Células HEK293 , Humanos , Insetos/citologia , Modelos Moleculares , Mutação , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptores CXCR4/genética , beta-Arrestinas/metabolismo
16.
iScience ; 23(2): 100859, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32058970

RESUMO

Polarized distribution of organelles and molecules inside a cell is vital for a range of cellular processes and its loss is frequently encountered in disease. Polarization during planar cell migration is a special condition in which cellular orientation is triggered by cell-cell contact. We demonstrate that the protein Daple (CCDC88C) is a component of cell junctions in epithelial cells which serves like a cellular "compass" for establishing and maintaining contact-triggered planar polarity. Furthermore, these processes may be mediated through interaction with the polarity regulator PARD3. This interaction, mediated by Daple's PDZ-binding motif (PBM) and the third PDZ domain of PARD3, is fine-tuned by tyrosine phosphorylation on Daple's PBM by receptor and non-receptor tyrosine kinases, such as Src. Hypophosphorylation strengthens the interaction, whereas hyperphosphorylation disrupts it, thereby revealing an unexpected role of Daple as a platform for signal integration and gradient sensing for tyrosine-based signals within the planar cell polarity pathway.

17.
J Comput Aided Mol Des ; 34(3): 219-230, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31925639

RESUMO

Small molecules binding at any of the multiple regulatory sites on the molecular surface of a protein kinase may stabilize or disrupt the corresponding interaction, leading to consequent modulation of the kinase cellular activity. As such, each of these sites represents a potential drug target. Even targeting sites outside the immediate ATP site, the so-called exosites, may cause desirable biological effects through an allosteric mechanism. Targeting exosites can alleviate adverse effects and toxicity that is common when ATP-site compounds bind promiscuously to many other types of kinases. In this study we have identified, catalogued, and annotated all potentially druggable exosites on the protein kinase domains within the existing structural human kinome. We then priority-ranked these exosites by those most amenable to drug design. In order to identify pockets that are either consistent across the kinome, or unique and specific to a particular structure, we have also implemented a normalized representation of all pockets, and displayed these graphically. Finally, we have built a database and designed a web-based interface for users interested in accessing the 3-dimensional representations of these pockets. We envision this information will assist drug discovery efforts searching for untargeted binding pockets in the human kinome.


Assuntos
Sítios de Ligação/genética , Desenho de Fármacos , Genoma Humano/efeitos dos fármacos , Proteínas Quinases/genética , Trifosfato de Adenosina/química , Trifosfato de Adenosina/genética , Sítios de Ligação/efeitos dos fármacos , Genoma Humano/genética , Humanos , Ligação Proteica/genética , Domínios Proteicos/genética , Proteínas Quinases/química , Propriedades de Superfície/efeitos dos fármacos
18.
Br J Pharmacol ; 177(8): 1917-1930, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31881094

RESUMO

BACKGROUND AND PURPOSE: Negative allosteric modulators (NAMs) that target the calcium-sensing receptor (CaS receptor) were originally developed for the treatment of osteoporosis by stimulating the release of endogenous parathyroid hormone, but failed in human clinical trials. Several chemically and structurally distinct NAM scaffolds have been described, but it is not known how these different scaffolds interact with the CaS receptor to inhibit receptor signalling in response to agonists. EXPERIMENTAL APPROACH: In the present study, we used a mutagenesis approach combined with analytical pharmacology and computational modelling to probe the binding sites of four distinct NAM scaffolds. KEY RESULTS: Although all four scaffolds bind to the 7-transmembrane and/or extracellular or intracellular loops, they occupy distinct regions, as previously shown for positive allosteric modulators of the CaS receptor. Furthermore, different NAM scaffolds mediate negative allosteric modulation via distinct amino acid networks. CONCLUSION AND IMPLICATIONS: These findings aid our understanding of how different NAMs bind to and inhibit the CaS receptor. Elucidation of allosteric binding sites in the CaS receptor has implications for the discovery of novel allosteric modulators.


Assuntos
Receptores de Detecção de Cálcio , Regulação Alostérica , Sítio Alostérico , Sítios de Ligação , Células HEK293 , Humanos
19.
J Immunol ; 203(12): 3157-3165, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31676674

RESUMO

C-C chemokine receptor 2 (CCR2) is a key driver of monocyte/macrophage trafficking to sites of inflammation and has long been considered a target for intervention in autoimmune disease. However, systemic administration of CCR2 antagonists is associated with marked increases in CCL2, a CCR2 ligand, in the blood. This heretofore unexplained phenomenon complicates interpretation of in vivo responses to CCR2 antagonism. We report that CCL2 elevation after pharmacological CCR2 blockade is due to interruption in a balance between CCL2 secretion by a variety of cells and its uptake by constitutive internalization and recycling of CCR2. We observed this phenomenon in response to structurally diverse CCR2 antagonists in wild-type mice, and also found substantially higher CCL2 plasma levels in mice lacking the CCR2 gene. Our findings suggest that CCL2 is cleared from blood in a CCR2-dependent but G protein (Gαi, Gαs or Gαq/11)-independent manner. This constitutive internalization is rapid: on a given monocyte, the entire cell surface CCR2 population is turned over in <30 minutes. We also found that constitutive receptor internalization/recycling and ligand uptake are not universal across monocyte-expressed chemokine receptors. For example, CXCR4 does not internalize constitutively. In summary, we describe a mechanism that explains the numerous preclinical and clinical reports of increased CCL2 plasma levels following in vivo administration of CCR2 antagonists. These findings suggest that constitutive CCL2 secretion by monocytes and other cell types is counteracted by constant uptake and internalization by CCR2-expressing cells. The effectiveness of CCR2 antagonists in disease settings may be dependent upon this critical equilibrium.


Assuntos
Quimiocina CCL2/biossíntese , Receptores CCR2/metabolismo , Animais , Biomarcadores , Linhagem Celular , Quimiocina CCL2/sangue , Quimiocina CCL2/genética , Relação Dose-Resposta a Droga , Feminino , Expressão Gênica , Humanos , Camundongos , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/metabolismo , Receptores CCR2/antagonistas & inibidores
20.
Sci Rep ; 9(1): 15893, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31685885

RESUMO

CK2 is a constitutively active protein kinase overexpressed in numerous malignancies. Interaction between CK2α and CK2ß subunits is essential for substrate selectivity. The CK2α/CK2ß interface has been previously targeted by peptides to achieve functional effects; however, no small molecules modulators were identified due to pocket flexibility and open shape. Here we generated numerous plausible conformations of the interface using the fumigation modeling protocol, and virtually screened a compound library to discover compound 1 that suppressed CK2α/CK2ß interaction in vitro and inhibited CK2 in a substrate-selective manner. Orthogonal SPR, crystallography, and NMR experiments demonstrated that 4 and 6, improved analogs of 1, bind to CK2α as predicted. Both inhibitors alter CK2 activity in cells through inhibition of CK2 holoenzyme formation. Treatment with 6 suppressed MDA-MB231 triple negative breast cancer cell growth and induced apoptosis. Altogether, our findings exemplify an innovative computational-experimental approach and identify novel non-peptidic inhibitors of CK2 subunit interface disclosing substrate-selective functional effects.


Assuntos
Caseína Quinase II/antagonistas & inibidores , Holoenzimas/metabolismo , Inibidores de Proteínas Quinases/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Caseína Quinase II/metabolismo , Domínio Catalítico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Holoenzimas/química , Humanos , Cinética , Simulação de Acoplamento Molecular , Peptídeos/química , Peptídeos/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/metabolismo , Especificidade por Substrato , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...