Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 75(24): 12266-78, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11711617

RESUMO

To identify sites in gp120 that interact with the CCR5 coreceptor and to analyze the mechanisms of infection, we selected variants of the CCR5-dependent JRCSF molecular clone of human immunodeficiency virus type 1 (HIV-1) that adapted to replicate in HeLa-CD4 cells that express the mutant coreceptor CCR5(Y14N) or CCR5(G163R), which were previously shown to bind purified gp120-CD4 complexes only weakly. Correspondingly, these mutant CCR5s mediate infections of wild-type virus only at relatively high cell surface concentrations, demonstrating a concentration-dependent assembly requirement for infection. The plots of viral infectivity versus concentration of coreceptors had sigmoidal shapes, implying involvement of multiple coreceptors, with an estimated stoichiometry of four to six CCR5s in the active complexes. All of the adapted viruses had mutations in the V3 loops of their gp120s. The titers of recombinant HIV-1 virions with these V3 mutations were determined in previously described panels of HeLa-CD4 cell clones that express discrete amounts of CCR5(Y14N) or CCR5(G163R). The V3 loop mutations did not alter viral utilization of wild-type CCR5, but they specifically enhanced utilization of the mutant CCR5s by two distinct mechanisms. Several mutant envelope glycoproteins were highly fusogenic in syncytium assays, and these all increased the efficiency of infection of the CCR5(Y14N) or CCR5(G163R) clonal panels without enhancing virus adsorption onto the cells or viral affinity for the coreceptor. In contrast, V3 loop mutation N300Y was selected during virus replication in cells that contained only a trace of CCR5(Y14N) and this mutation increased the apparent affinity of the virus for this coreceptor, as indicated by a shift in the sigmoid-shaped infectivity curve toward lower concentrations. Surprisingly, N300Y increased viral affinity for the second extracellular loop of CCR5(Y14N) rather than for the mutated amino terminus. Indeed, the resulting virus was able to use a mutant CCR5 that lacks 16 amino acids at its amino terminus, a region previously considered essential for CCR5 coreceptor function. Our results demonstrate that the role of CCR5 in infection involves at least two steps that can be strongly and differentially altered by mutations in either CCR5 or the V3 loop of gp120: a concentration-dependent binding step that assembles a critical multivalent virus-coreceptor complex and a postassembly step that likely involves a structural rearrangement of the complex. The postassembly step can severely limit HIV-1 infections and is not an automatic consequence of virus-coreceptor binding, as was previously assumed. These results have important implications for our understanding of the mechanism of HIV-1 infection and the factors that may select for fusogenic gp120 variants during AIDS progression.


Assuntos
Proteína gp120 do Envelope de HIV/química , HIV-1/fisiologia , Fusão de Membrana , Receptores CCR5/química , Sequência de Aminoácidos , Animais , Cricetinae , Proteína gp120 do Envelope de HIV/fisiologia , Células HeLa , Humanos , Dados de Sequência Molecular , Receptores CCR5/fisiologia , Sulfatos/química
2.
J Virol ; 75(18): 8449-60, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11507190

RESUMO

In contrast to humans, several primate species are believed to have harbored simian immunodeficiency viruses (SIVs) since ancient times. In particular, the geographically dispersed species of African green monkeys (AGMs) are all infected with highly diversified SIVagm viruses at high prevalences (greater than 50% of sexually mature individuals) without evident diseases, implying that the progenitor monkeys were infected prior to their dispersal. If this is correct, AGMs would be expected to have accumulated frequent resistance-conferring polymorphisms in host genes that are important for SIV replication. Accordingly, we analyzed the coding sequences of the CCR5 coreceptors from 26 AGMs (52 alleles) in distinct populations of the four species. These samples contained 29 nonsynonymous coding changes and only 15 synonymous nucleotide substitutions, implying intense functional selection. Moreover, 24 of the resulting amino acid substitutions were tightly clustered in the CCR5 amino terminus (D13N in the vervets and Y14N in the tantalus species) or in the first extracellular loop (Q93R and Q93K in all species). The Y14N substitution was extremely frequent in the 12 wild-born African tantalus, with 7 monkeys being homozygous for this substitution and 4 being heterozygous. Although two of these heterozygotes and the only wild-type homozygote were naturally infected with SIVagm, none of the Y14N homozygotes were naturally infected. A focal infectivity assay for SIVagm indicated that all five tested SIVagms efficiently use CCR5 as a coreceptor and that they also use CXCR6 (STRL33/Bonzo) and GPR15 (BOB) with lower efficiencies but not CXCR4. Interestingly, the D13N, Y14N, Q93R, and Q93K substitutions in AGM CCR5 all strongly inhibited infections by the SIVagm isolates in vitro. The Y14N substitution eliminates a tyrosine sulfation site that is important for infections and results in partial N-linked glycosylation (i.e., 60% efficiency) at this position. Nevertheless, the CCR5(Y14N) component that lacks an N-linked oligosaccharide binds the chemokine MIP-lbeta with a normal affinity and is fully active in signal transduction. Similarly, D13N and Q93R substitutions did not interfere with signal transduction. Thus, the common substitution polymorphisms in AGM CCR5 strongly inhibit SIVagm infections while substantially preserving chemokine signaling. In contrast, polymorphisms of human CCR5 are relatively infrequent, and the amino acid substitutions are randomly situated and generally without effects on coreceptor function. These results support an ancient coevolution of AGMs and SIVagm viruses and establish AGMs as a highly informative model for learning about host proteins that play critical roles in immunodeficiency virus infections.


Assuntos
Evolução Molecular , Família Multigênica , Polimorfismo Genético , Receptores CCR5/genética , Vírus da Imunodeficiência Símia/fisiologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sítios de Ligação , Linhagem Celular , Chlorocebus aethiops , Células HeLa , Humanos , Dados de Sequência Molecular , Mutagênese , Receptores CCR5/metabolismo , Vírus da Imunodeficiência Símia/metabolismo , Células Vero , Xenopus laevis
3.
J Virol ; 74(15): 7005-15, 2000 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10888639

RESUMO

In addition to the primary cell surface receptor CD4, CCR5 or another coreceptor is necessary for infections by human immunodeficiency virus type 1 (HIV-1), yet the mechanisms of coreceptor function and their stoichiometries in the infection pathway remain substantially unknown. To address these issues, we studied the effects of CCR5 concentrations on HIV-1 infections using wild-type CCR5 and two attenuated mutant CCR5s, one with the mutation Y14N at a critical tyrosine sulfation site in the amino terminus and one with the mutation G163R in extracellular loop 2. The Y14N mutation converted a YYT sequence at positions 14 to 16 to an NYT consensus site for N-linked glycosylation, and the mutant protein was shown to be glycosylated at that position. The relationships between HIV-1 infectivity values and CCR5 concentrations took the form of sigmoidal (S-shaped) curves, which were dramatically altered in different ways by these mutations. Both mutations shifted the curves by factors of approximately 30- to 150-fold along the CCR5 concentration axis, consistent with evidence that they reduce affinities of virus for the coreceptor. In addition, the Y14N mutation specifically reduced the maximum efficiencies of infection that could be obtained at saturating CCR5 concentrations. The sigmoidal curves for all R5 HIV-1 isolates were quantitatively consistent with a simple mathematical model, implying that CCR5s reversibly associate with cell surface HIV-1 in a concentration-dependent manner, that approximately four to six CCR5s assemble around the virus to form a complex needed for infection, and that both mutations inhibit assembly of this complex but only the Y14N mutation also significantly reduces its ability to successfully mediate HIV-1 infections. Although several alternative models would be compatible with our data, a common feature of these alternatives is the cooperation of multiple CCR5s in the HIV-1 infection pathway. This cooperativity will need to be considered in future studies to address in detail the mechanism of CCR5-mediated HIV-1 membrane fusion.


Assuntos
HIV-1/patogenicidade , Receptores CCR5/metabolismo , Antígenos CD4/metabolismo , Quimiocina CCL4 , Citometria de Fluxo/métodos , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/metabolismo , Células HeLa , Humanos , Proteínas Inflamatórias de Macrófagos/metabolismo , Modelos Biológicos , Mutação , Radioimunoensaio , Receptores CCR5/genética
4.
J Biol Chem ; 274(33): 23499-507, 1999 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-10438529

RESUMO

Infections by human immunodeficiency virus type 1 (HIV-1) involve interactions of the viral envelope glycoprotein gp120 with CD4 and then with a coreceptor. R5 isolates of HIV-1 use CCR5 as a coreceptor, whereas X4 isolates use CXCR4. It is not known whether coreceptors merely trigger fusion of the viral and cellular membranes or whether they also influence the energetics of virus adsorption, the placement of the membrane fusion reaction, and the metabolism of adsorbed gp120. Surprisingly, the pathway for metabolism of adsorbed gp120 has not been investigated thoroughly in any cells. To address these issues, we used purified (125)I-gp120s derived from the R5 isolate BaL and from the X4 isolate IIIB as ligands for binding onto human cells that expressed CD4 alone or CD4 with a coreceptor. The gp120 preparations were active in forming ternary complexes with CD4 and the appropriate coreceptor. Moreover, the cellular quantities of CD4 and coreceptors were sufficient for efficient infections by the corresponding HIV-1 isolates. In these conditions, the kinetics and affinities of (125)I-gp120 adsorptions and their subsequent metabolisms were strongly dependent on CD4 but were not significantly influenced by CCR5 or CXCR4. After binding to CD4, the (125)I-gp120s slowly became resistant to extraction from the cell monolayers by pH 3.0 buffer, suggesting that they were endocytosed with half-times of 1-2 h. Within 20-30 min of endocytosis, the (125)I-gp120s were proteolytically degraded to small products that were shed into the media. The weak base chloroquine strongly inhibited (125)I-gp120 proteolysis and caused its intracellular accumulation, suggesting involvement of a low pH organelle. Results supporting these methods and conclusions were obtained by confocal immunofluorescence microscopy. We conclude that the energetics, kinetics, and pathways of (125)I-gp120 binding, endocytosis, and proteolysis are determined principally by CD4 rather than by coreceptors in cells that contain sufficient coreceptors for efficient infections. Therefore, the role of coreceptors in HIV-1 infections probably does not include steerage or subcellular localization of adsorbed virus.


Assuntos
Antígenos CD4/fisiologia , Proteína gp120 do Envelope de HIV/metabolismo , Receptores de HIV/fisiologia , Antígenos CD4/metabolismo , Endocitose , HIV-1/fisiologia , Células HeLa , Humanos , Hidrólise , Imuno-Histoquímica , Cinética , Fusão de Membrana , Microscopia Confocal , Ligação Proteica , Receptores CCR5/metabolismo , Receptores CCR5/fisiologia , Receptores CXCR4/metabolismo , Receptores CXCR4/fisiologia , Receptores de HIV/metabolismo
5.
J Biol Chem ; 274(4): 1905-13, 1999 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-9890944

RESUMO

Like the CCR5 chemokine receptors of humans and rhesus macaques, the very homologous (approximately 98-99% identical) CCR5 of African green monkeys (AGMs) avidly binds beta-chemokines and functions as a coreceptor for simian immunodeficiency viruses. However, AGM CCR5 is a weak coreceptor for tested macrophage-tropic (R5) isolates of human immunodeficiency virus type 1 (HIV-1). Correspondingly, gp120 envelope glycoproteins derived from R5 isolates of HIV-1 bind poorly to AGM CCR5. We focused on a unique extracellular amino acid substitution at the juncture of transmembrane helix 4 (TM4) and extracellular loop 2 (ECL2) (Arg for Gly at amino acid 163 (G163R)) as the likely source of the weak R5 gp120 binding and HIV-1 coreceptor properties of AGM CCR5. Accordingly, a G163R mutant of human CCR5 was severely attenuated in its ability to bind R5 gp120s and to mediate infection by R5 HIV-1 isolates. Conversely, the R163G mutant of AGM CCR5 was substantially strengthened as a coreceptor for HIV-1 and had improved R5 gp120 binding affinity relative to the wild-type AGM CCR5. These substitutions at amino acid position 163 had no effect on chemokine binding or signal transduction, suggesting the absence of structural alterations. The 2D7 monoclonal antibody has been reported to bind to ECL2 and to block HIV-1 binding and infection. Whereas 2D7 antibody binding to CCR5 was unaffected by the G163R mutation, it was prevented by a conservative ECL2 substitution (K171R), shared between rhesus and AGM CCR5s. Thus, it appears that the 2D7 antibody binds to an epitope that includes Lys-171 and may block HIV-1 infection mediated by CCR5 by occluding an HIV-1-binding site in the vicinity of Gly-163. In summary, our results identify a site for gp120 interaction that is critical for R5 isolates of HIV-1 in the central core of human CCR5, and we propose that this site collaborates with a previously identified region in the CCR5 amino terminus to enable gp120 binding and HIV-1 infections.


Assuntos
Glicina/metabolismo , HIV-1/fisiologia , Fusão de Membrana/fisiologia , Receptores CCR5/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Sítios de Ligação de Anticorpos , Ligação Competitiva , Linhagem Celular , Chlorocebus aethiops , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/patogenicidade , Humanos , Macaca mulatta , Dados de Sequência Molecular , Receptores CCR5/química , Receptores CCR5/imunologia , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Especificidade da Espécie
6.
J Virol ; 72(4): 2855-64, 1998 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-9525605

RESUMO

It has been proposed that changes in cell surface concentrations of coreceptors may control infections by human immunodeficiency virus type 1 (HIV-1), but the mechanisms of coreceptor function and the concentration dependencies of their activities are unknown. To study these issues and to generate stable clones of adherent cells able to efficiently titer diverse isolates of HIV-1, we generated two panels of HeLa-CD4/CCR5 cells in which individual clones express either large or small quantities of CD4 and distinct amounts of CCR5. The panels were made by transducing parental HeLa-CD4 cells with the retroviral vector SFF-CCR5. Derivative clones expressed a wide range of CCR5 quantities which were between 7.0 x 10(2) and 1.3 x 10(5) molecules/cell as measured by binding antibodies specific for CCR5 and the chemokine [125I]MIP1beta. CCR5 was mobile in the membranes, as indicated by antibody-induced patching. In cells with a large amount of CD4, an unexpectedly low trace of CCR5 (between 7 x 10(2) and 2.0 x 10(3) molecules/cell) was sufficient for maximal susceptibility to all tested HIV-1, including primary patient macrophagetropic and T-cell-tropic isolates. Indeed, the titers as indicated by immunoperoxidase staining of infected foci were as high as the tissue culture infectious doses measured in human peripheral blood mononuclear cells. In contrast, cells with a small amount of CD4 required a much larger quantity of CCR5 for maximal infection by macrophagetropic HIV-1 (ca. 1.0 x 10(4) to 2.0 x 10(4) molecules/cell). Cells that expressed low and high amounts of CD4 were infected with equal efficiencies when CCR5 concentrations were above threshold levels for maximal infection. Our results suggest that the concentrations of CD4 and CCR5 required for efficient infections by macrophagetropic HIV-1 are interdependent and that the requirements for each are increased when the other component is present in a limiting amount. We conclude that CD4 and CCR5 directly or indirectly interact in a concentration-dependent manner within a pathway that is essential for infection by macrophagetropic HIV-1. In addition, our results suggest that multivalent virus-receptor bonds and diffusion in the membrane contribute to HIV-1 infections.


Assuntos
Antígenos CD4/metabolismo , HIV-1/fisiologia , Macrófagos/virologia , Receptores CCR5/metabolismo , Antígenos CD4/genética , Membrana Celular/metabolismo , Clonagem Molecular , Relação Dose-Resposta a Droga , HIV-1/isolamento & purificação , Células HeLa , Humanos , Receptores CCR5/genética
7.
J Virol ; 71(11): 8642-56, 1997 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-9343222

RESUMO

CCR5, a receptor for the CC chemokines RANTES, Mip1alpha, and Mip1beta, has been identified as a coreceptor for infections by macrophage-tropic isolates of human immunodeficiency virus type 1 (HIV-1). To study its structure and function, we isolated cDNA clones of human, African green monkey (AGM), and NIH/Swiss mouse CCR5s, and we quantitatively analyzed infections by macrophage-tropic HIV-1 and SIVmac251 after transfecting human HeLa-CD4 cells with the CCR5 expression vectors. The AGM and NIH/Swiss mouse CCR5 proteins are 97.7 to 98.3% and 79.8% identical to the human protein, respectively. In addition, we analyzed site-directed mutants and chimeras of these CCR5s. Cell surface expression of CCR5 proteins was monitored by using a specific rabbit antiserum and by binding the chemokine [125I]Mip1beta. Our major results were as follows. (i) Two distinct AGM CCR5 sequences were reproducibly found in DNA from CV-1 cells. The AGM clone 1 CCR5 protein differs from that of clone 2 by two substitutions, Y14N in the amino-terminal extracellular region and L352F at the carboxyl terminus. Interestingly, AGM clone 1 CCR5 was inactive as a coreceptor for all tested macrophage-tropic isolates of HIV-1, whereas AGM clone 2 CCR5 was active. As shown by chimera studies and site-directed mutagenesis, the Y14N substitution in AGM clone 1 CCR5 was solely responsible for blocking HIV-1 infections. In contrast, both AGM CCR5 clones were active coreceptors for SIVmac251. Studies of DNA samples from other AGMs indicated frequent additional CCR5 polymorphisms, and we cloned an AGM clone 2 variant with a Q93R substitution in the extracellular loop 1 from one heterozygote. This variant CCR5 was active as a coreceptor for SIVmac251 but was only weakly active for macrophage-tropic isolates of HIV-1. In addition, SIVmac251 appeared to be dependent on the extracellular amino terminus and loop 2 regions of human CCR5 for maximal infection. Our results suggest major differences in the interactions of SIVmac251 and macrophage-tropic HIV-1 isolates with 19, N13, and Y14 in the amino terminus; with Q93 in extracellular loop 1; and with extracellular loop 2 of human CCR5. (ii) The NIH/Swiss mouse CCR5 protein differs at multiple positions from sequences recently reported for other inbred strains of mice. This CCR5 was inactive as a coreceptor for HIV-1 and SIVmac251. Studies of chimeras that contained different portions of NIH/Swiss mouse CCR5 substituted into human CCR5, as well as the reciprocal chimeras, indicated that the amino-terminal region and extracellular loops 1 and 2 of human CCR5 contribute to its coreceptor activity for macrophage-tropic isolates of HIV-1. Specific differences with previous CCR5 chimera results occurred because the NIH/Swiss mouse CCR5 contains a unique substitution corresponding to P183L in extracellular loop 2 that is nonpermissive for coreceptor activity. We conclude that diverse CCR5 sequences occur in AGMs and mice, that SIVmac251 and macrophage-tropic HIV-1 isolates interact differently with specific CCR5 amino acids, and that multiple regions of human CCR5 contribute to its coreceptor functions. In addition, we have identified naturally occurring amino acid polymorphisms in three extracellular regions of CCR5 (Y14N, Q93R, and P183L) that do not interfere with cell surface expression or Mip1beta binding but prevent infections by macrophage-tropic isolates of HIV-1. In contrast to previous evidence, these results suggest that CCR5 contains critical sites that are essential for HIV-1 infections.


Assuntos
Chlorocebus aethiops/genética , HIV-1/crescimento & desenvolvimento , Receptores CCR5/genética , Vírus da Imunodeficiência Símia/crescimento & desenvolvimento , Células 3T3 , Sequência de Aminoácidos , Animais , Genes , Células HeLa , Humanos , Técnicas Imunológicas , Macrófagos/virologia , Camundongos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Polimorfismo Genético , Coelhos , Proteínas Recombinantes de Fusão , Alinhamento de Sequência , Especificidade da Espécie , Relação Estrutura-Atividade
8.
J Virol ; 70(10): 6884-91, 1996 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-8794331

RESUMO

The cell surface receptor for ecotropic host-range (infection limited to mice or rats) murine leukemia viruses (MuLVs) is the widely expressed system y+ transporter for cationic amino acids (CAT-1). Like other retroviruses, ecotropic MuLV infection eliminates virus-binding sites from cell surfaces and results in complete interference to superinfection. Surprisingly, infection causes only partial (ca 40 to 60%) loss of mouse CAT-1 transporter activity. The NIH/Swiss mouse CAT-1 (mCAT-1) contains 622 amino acids with 14 hydrophobic potential membrane-spanning sequences, and it is known that the third extracellular loop from the amino terminus is required for virus binding. Although loop 3 is hypervariable in different species and mouse strains, consistent with its proposed role in virus-host coevolution, loop 3 sequences of both susceptible and resistant species contain consensus sites for N-linked glycosylation. Both of the consensus sites in loop 3 of mCAT-1 are known to be glycosylated and to contain oligosaccharides with diverse sizes (J. W. Kim and J. M. Cunningham, J. Biol. Chem. 268:16316-16320, 1993). We confirmed by several lines of evidence that N-linked glycosylation occludes a potentially functional virus-binding site in the CAT-1 protein of hamsters, thus contributing to resistance of that species. To study the role of receptor glycosylation in animals susceptible to infection, we eliminated loop 3 glycosylation sites by mutagenesis of an mCAT-1 cDNA clone, and we expressed wild-type and mutant receptors in mink fibroblasts and Xenopus oocytes. These receptors had indistinguishable transport properties, as determined by kinetic and voltage-jump electrophysiological studies of arginine uptake in oocytes and by analyses Of L-[3H]arginine uptake in mink cells. Bindings of ecotropic envelope glycoprotein gp7O to the accessible receptor sites on surfaces of mink cells expressing wild-type or mutant mCAT-1 were not significantly different in kinetics or in equilibrium affinities (i.e., K(D) approximately 3.7 X 10(-10) to 7.5 X 10(-10) M). However, when values were normalized to the same levels of mCAT-1 transporter expression, cells with wild-type glycosylated mCAT-1 had only approximately 50% as many sites for gp70 binding as cells with unglycosylated mCAT-1. Although infection with ecotropic MuLV had no effect on activity of the mink CAT-1 transporter that does not bind virus, it caused partial down-modulation of wild-type mCAT-1 and complete down-modulation of unglycosylated mutant mCAT-1. These results suggest that N-linked glycosylation causes wild-type mCAT-1 heterogeneity and that a significant proportion is inaccessible to virus. In part because only the interactive fraction of mCAT-1 can be down-modulated, infected murine cells conserve an amino acid transport capability that supports their viability.


Assuntos
Proteínas de Transporte/metabolismo , Vírus da Leucemia Murina/metabolismo , Receptores Virais/metabolismo , Sequência de Aminoácidos , Sistemas de Transporte de Aminoácidos , Animais , Proteínas de Transporte/genética , Linhagem Celular , Cricetinae , Regulação para Baixo , Glicosilação , Humanos , Vírus da Leucemia Murina/patogenicidade , Camundongos , Dados de Sequência Molecular , Mutação , Ratos , Análise de Sequência , Virulência , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...