Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 132: 6-12, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25936963

RESUMO

AIMS: We investigated whether trans-fat supplemented over two generations of rats could alter neuronal membranes and influence mania-like behaviors, as well as the effects of lithium (Li). MAIN METHODS: Two generations of female rats were supplemented with soybean oil (SO-C, rich in n-6 fatty acids - FA) or hydrogenated vegetable fat (HVF, rich in trans-fatty acids - TFA). Male rats born from the 1st and 2nd generations were maintained in the same supplementation until adulthood, when they were exposed to an amphetamine (AMPH)-induced model of mania and co-treated with Li or not. KEY FINDINGS: AMPH increased locomotion of both generations and this influence was higher in the HVF than in the SO-C group. Conversely, AMPH increased long-term memory in SO-C group of the 2nd generation. HVF supplementation allowed hippocampal TFA incorporation in rats of both generations (0.1 and 0.2%, respectively). Oxidative parameters indicated higher levels of protein carbonyl (PC) in the HVF group with no changes in catalase (CAT) activity in the 1st generation. In the 2nd generation, AMPH increased PC levels of both experimental groups, whereas CAT activity was lower per se in the HVF group only. The co-treatment with Li leveled out all behavioral parameters, PC levels and CAT activity indicating a significant neuroprotective role. SIGNIFICANCE: These findings suggest that chronic HVF consumption allows a rising incorporation of TFA in the brain, which may be reflected on the neuropsychiatric conditions related to mania, whereas the effects of Li are not modified in the course of this harmful dietary habit.


Assuntos
Transtorno Bipolar/tratamento farmacológico , Suplementos Nutricionais/efeitos adversos , Lítio/uso terapêutico , Ácidos Graxos trans/efeitos adversos , Anfetaminas/toxicidade , Análise de Variância , Animais , Transtorno Bipolar/induzido quimicamente , Catalase/metabolismo , Feminino , Hipocampo/química , Locomoção/efeitos dos fármacos , Masculino , Memória de Longo Prazo/efeitos dos fármacos , Ratos , Ratos Wistar , Óleo de Soja/administração & dosagem , Ácidos Graxos trans/administração & dosagem , Ácidos Graxos trans/análise
2.
Physiol Behav ; 139: 344-50, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25433314

RESUMO

In recent decades, the increased consumption of processed foods, which are rich in hydrogenated vegetable fat (HVF), has led to a decreased consumption of fish and oilseed, rich in omega-3 fatty acids. This eating habit provides an increased intake of trans fatty acids (TFA), which may be related to neuropsychiatric conditions, including inattention and hyperactivity. In this study, we evaluated the potential connection between prolonged trans fat consumption and development of hyperactivity-like symptoms in rats using different behavioral paradigms. Trans fat intake for 10 months (Experiment 1), as well as during pregnancy and lactation across two sequential generations of rats, (Experiment 4) induced active coping in the forced swimming task (FST). In addition, HVF supplementation was associated with increased locomotion before and after amphetamine (AMPH) administration (Experiment 2). Similarly, HVF supplementation during pregnancy and lactation were associated with increased locomotion in both young and adult rats (Experiment 3). Furthermore, trans fat intake across two sequential generations increased locomotor and exploratory activities following stressors (Experiment 4). From these results, we suggest that chronic consumption of trans fat is able to enhance impulsiveness and reactivity to novelty, facilitating hyperactive behaviors.


Assuntos
Gorduras na Dieta/toxicidade , Agitação Psicomotora/fisiopatologia , Ácidos Graxos trans/toxicidade , Adaptação Psicológica/fisiologia , Acatisia Induzida por Medicamentos/fisiopatologia , Anfetamina/farmacologia , Animais , Estimulantes do Sistema Nervoso Central/farmacologia , Comportamento Exploratório/fisiologia , Feminino , Comportamento Impulsivo/fisiologia , Lactação , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Óleos de Plantas/toxicidade , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Agitação Psicomotora/etiologia , Distribuição Aleatória , Ratos Wistar , Estresse Psicológico/fisiopatologia
3.
Neuroscience ; 286: 353-63, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25499313

RESUMO

Since that fast food consumption have raised concerns about people's health, we evaluated the influence of trans fat consumption on behavioral, biochemical and molecular changes in the brain-cortex of second generation rats exposed to a model of mania. Two successive generations of female rats were supplemented with soybean oil (SO, rich in n-6 FA, control group), fish oil (FO, rich in n-3 FA) and hydrogenated vegetable fat (HVF, rich in trans FA) from pregnancy, lactation to adulthood, when male rats from 2nd generation received amphetamine (AMPH-4 mg/kg-i.p., once a day, for 14 days) treatment. AMPH increased locomotor index in all animals, which was higher in the HVF group. While the FO group showed increased n-3 polyunsaturated fatty acid (PUFA) incorporation and reduced n-6/n-3 PUFA ratio, HVF allowed trans fatty acid (TFA) incorporation and increased n-6/n-3 PUFA ratio in the brain-cortex. In fact, the FO group showed minor AMPH-induced hyperactivity, decreased reactive species (RS) generation per se, causing no changes in protein carbonyl (PC) levels and dopamine transporter (DAT). FO supplementation showed molecular changes, since proBDNF was increased per se and reduced by AMPH, decreasing the brain-derived neurotrophic factor (BDNF) level following drug treatment. Conversely, HVF was related to increased hyperactivity, higher PC level per se and higher AMPH-induced PC level, reflecting on DAT, whose levels were decreased per se as well as in AMPH-treated groups. In addition, while HVF increased BDNF-mRNA per se, AMPH reduced this value, acting on BDNF, whose level was lower in the same AMPH-treated experimental group. ProBDNF level was influenced by HVF supplementation, but it was not sufficient to modify BDNF level. These findings reinforce that prolonged consumption of trans fat allows TFA incorporation in the cortex, facilitating hyperactive behavior, oxidative damages and molecular changes. Our study is a warning about cross-generational consumption of processed food, since high trans fat may facilitate the development of neuropsychiatric conditions, including bipolar disorder (BD).


Assuntos
Transtorno Bipolar/metabolismo , Transtorno Bipolar/psicologia , Córtex Cerebral/metabolismo , Ácidos Graxos trans/toxicidade , Fatores Etários , Anfetamina , Animais , Transtorno Bipolar/induzido quimicamente , Química Encefálica , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Ácidos Graxos Ômega-3/análise , Ácidos Graxos Ômega-6/análise , Feminino , Óleos de Peixe , Masculino , Atividade Motora , Gravidez , Carbonilação Proteica , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio , Óleo de Soja , Ácidos Graxos trans/análise
4.
Food Chem Toxicol ; 69: 38-45, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24694906

RESUMO

We evaluated the influence of dietary fats on ultraviolet radiation (UVR)-induced oxidative damage in skin of rats. Animals from two consecutive generations born of dams supplemented with fats during pregnancy and breastfeeding were maintained in the same supplementation: soybean-oil (SO, rich in n-6 FA, control group), fish-oil (FO, rich in n-3 FA) or hydrogenated-vegetable-fat (HVF, rich in TFA). At 90 days of age, half the animals from the 2nd generation were exposed to UVR (0.25 J/cm(2)) 3×/week for 12 weeks. The FO group presented higher incorporation of n-3 FA in dorsal skin, while the HVF group incorporated TFA. Biochemical changes per se were observed in skin of the HVF group: greater generation of reactive oxygen species (ROS), lower mitochondrial integrity and increased Na(+)K(+)-ATPase activity. UVR exposure increased skin wrinkles scores and ROS generation and decreased mitochondrial integrity and reduced-glutathione levels in the HVF group. In FO, UVR exposure was associated with smaller skin thickness and reduced levels of protein-carbonyl, together with increased catalase activity and preserved Na(+)K(+)-ATPase function. In conclusion, while FO may be protective, trans fat may be harmful to skin health by making it more vulnerable to UVR injury and thus more prone to develop photoaging and skin cancer.


Assuntos
Óleos de Peixe/farmacologia , Pele/efeitos da radiação , Ácidos Graxos trans/farmacologia , Raios Ultravioleta/efeitos adversos , Animais , Antioxidantes/metabolismo , Gorduras na Dieta/farmacologia , Ácidos Graxos/análise , Feminino , Hidrogenação , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/efeitos da radiação , Gravidez , Carbonilação Proteica/efeitos dos fármacos , Carbonilação Proteica/efeitos da radiação , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/patologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Óleo de Soja/farmacologia , Luz Solar/efeitos adversos
5.
Artigo em Inglês | MEDLINE | ID: mdl-23791617

RESUMO

The influence of dietary fatty acids (FA) on mania-like behavior and brain oxidative damage were evaluated in rats. First generation of rats born and maintained under supplementation with soybean-oil (SO), fish-oil (FO) or hydrogenated-vegetable-fat (HVF), which are rich in n-6, n-3 and trans (TFA) FA, respectively, until adulthood, were exposed to an amphetamine (AMPH)-induced mania animal model to behavioral and biochemical evaluations. While AMPH caused hyperlocomotion in HVF and, to a less extent, in SO- and FO-groups, a better memory performance was observed in FO group. Among vehicle-groups, HVF increased reactive species (RS) generation and protein-carbonyl (PC) levels in cortex; FO reduced RS generation in hippocampus and decreased PC levels in hippocampus and striatum. Among AMPH-treated animals, HVF exacerbated RS generation in all evaluated brain areas and increased PC levels in cortex and striatum; FO reduced RS generation in hippocampus and decreased PC levels in hippocampus and striatum. FO was related to higher percentage of polyunsaturated fatty acids (PUFA) and docosahexaenoic acid (DHA) in cortex and striatum, while HVF was associated to higher incorporation of TFA in cortex, hippocampus and striatum, besides increased n-6/n-3 FA ratio in striatum. While a continuous exposure to TFA may intensify oxidative events in brain, a prolonged FO consumption may prevent mania-like-behavior; enhance memory besides decreasing brain oxidative markers. A substantial inclusion of processed foods, instead of foods rich in omega-3, in the long term is able to influence the functionality of brain structures related to behavioral disturbances and weaker neuroprotection, whose impact should be considered by food safety authorities and psychiatry experts.


Assuntos
Encéfalo/efeitos dos fármacos , Gorduras na Dieta/farmacologia , Comportamento Exploratório/efeitos dos fármacos , Ácidos Graxos/metabolismo , Atividade Motora/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Reconhecimento Psicológico/efeitos dos fármacos , Anfetamina , Animais , Transtorno Bipolar/induzido quimicamente , Transtorno Bipolar/dietoterapia , Transtorno Bipolar/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Gorduras na Dieta/uso terapêutico , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Gravidez , Ratos , Espécies Reativas de Oxigênio/metabolismo
6.
Neuroscience ; 247: 242-52, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-23742847

RESUMO

Because consumption of processed foods has increased in the last decades and so far its potential influence on emotionality and susceptibility to stress is unknown, we studied the influence of different fatty acids (FA) on behavioral and biochemical parameters after acute restrain stress (AS) exposure. Two sequential generations of female rats were supplemented with soybean oil (control group; C-SO), fish oil (FO) and hydrogenated vegetable fat (HVF) from pregnancy and during lactation. At 41days of age, half the animals of each supplemented group were exposed to AS and observed in open field and elevated plus maze task, followed by euthanasia for biochemical assessments. The HVF-supplemented group showed higher anxiety-like symptoms per se, while the C-SO and FO groups did not show these behaviors. Among groups exposed to AS, HVF showed locomotor restlessness in the open field, while both C-SO and HVF groups showed anxiety-like symptoms in the elevated plus maze, but this was not observed in the FO group. Biochemical evaluations showed higher lipoperoxidation levels and lower cell viability in cortex in the HVF group. In addition, HVF-treated rats showed reduced catalase activity in striatum and hippocampus, as well as increased generation of reactive species in striatum, while FO was associated with increased cell viability in the hippocampus. Among groups exposed to AS, HVF increased reactive species generation in the brain, decreased cell viability in the cortex and striatum, and decreased catalase activity in the striatum and hippocampus. Taken together, our findings show that the type of FA provided during development and growth over two generations is able to modify the brain oxidative status, which was particularly adversely affected by trans fat. In addition, the harmful influence of chronic consumption of trans fats as observed in this study can enhance emotionality and anxiety parameters resulting from stressful situations of everyday life, which can trigger more severe neuropsychiatric conditions.


Assuntos
Encéfalo/metabolismo , Estresse Oxidativo/fisiologia , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Estresse Psicológico/metabolismo , Ácidos Graxos trans/efeitos adversos , Fatores Etários , Animais , Animais Recém-Nascidos , Encéfalo/efeitos dos fármacos , Feminino , Masculino , Estresse Oxidativo/efeitos dos fármacos , Gravidez , Distribuição Aleatória , Ratos , Estresse Psicológico/psicologia , Fatores de Tempo , Ácidos Graxos trans/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA