Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38673751

RESUMO

Plant-derived multitarget compounds may represent a promising therapeutic strategy for multifactorial diseases, such as Alzheimer's disease (AD). Artemisinin and its derivatives were indicated to beneficially modulate various aspects of AD pathology in different AD animal models through the regulation of a wide range of different cellular processes, such as energy homeostasis, apoptosis, proliferation and inflammatory pathways. In this review, we aimed to provide an up-to-date overview of the experimental evidence documenting the neuroprotective activities of artemi-sinins to underscore the potential of these already-approved drugs for treating AD also in humans and propose their consideration for carefully designed clinical trials. In particular, the benefits to the main pathological hallmarks and events in the pathological cascade throughout AD development in different animal models of AD are summarized. Moreover, dose- and context-dependent effects of artemisinins are noted.


Assuntos
Doença de Alzheimer , Artemisininas , Fármacos Neuroprotetores , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Artemisininas/uso terapêutico , Artemisininas/farmacologia , Artemisininas/química , Humanos , Animais , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Modelos Animais de Doenças , Apoptose/efeitos dos fármacos
2.
Int J Mol Sci ; 24(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36902054

RESUMO

Alzheimer's disease (AD) is characterized by synaptic failure and neuronal loss. Recently, we demonstrated that artemisinins restored the levels of key proteins of inhibitory GABAergic synapses in the hippocampus of APP/PS1 mice, a model of cerebral amyloidosis. In the present study, we analyzed the protein levels and subcellular localization of α2 and α3 subunits of GlyRs, indicated as the most abundant receptor subtypes in the mature hippocampus, in early and late stages of AD pathogenesis, and upon treatment with two different doses of artesunate (ARS). Immunofluorescence microscopy and Western blot analysis demonstrated that the protein levels of both α2 and α3 GlyRs are considerably reduced in the CA1 and the dentate gyrus of 12-month-old APP/PS1 mice when compared to WT mice. Notably, treatment with low-dose ARS affected GlyR expression in a subunit-specific way; the protein levels of α3 GlyR subunits were rescued to about WT levels, whereas that of α2 GlyRs were not affected significantly. Moreover, double labeling with a presynaptic marker indicated that the changes in GlyR α3 expression levels primarily involve extracellular GlyRs. Correspondingly, low concentrations of artesunate (≤1 µM) also increased the extrasynaptic GlyR cluster density in hAPPswe-transfected primary hippocampal neurons, whereas the number of GlyR clusters overlapping presynaptic VIAAT immunoreactivities remained unchanged. Thus, here we provide evidence that the protein levels and subcellular localization of α2 and α3 subunits of GlyRs show regional and temporal alterations in the hippocampus of APP/PS1 mice that can be modulated by the application of artesunate.


Assuntos
Doença de Alzheimer , Antimaláricos , Artesunato , Hipocampo , Receptores de Glicina , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Artesunato/uso terapêutico , Hipocampo/metabolismo , Receptores de Glicina/metabolismo , Sinapses/metabolismo , Antimaláricos/uso terapêutico , Modelos Animais de Doenças
3.
Biol Chem ; 403(1): 73-87, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33878252

RESUMO

Artemisinins, a group of plant-derived sesquiterpene lactones, are efficient antimalarial agents. They also share anti-inflammatory and anti-viral activities and were considered for treatment of neurodegenerative disorders like Alzheimer's disease (AD). Additionally, artemisinins bind to gephyrin, the multifunctional scaffold of GABAergic synapses, and modulate inhibitory neurotransmission in vitro. We previously reported an increased expression of gephyrin and GABAA receptors in early pre-symptomatic stages of an AD mouse model (APP-PS1) and in parallel enhanced CDK5-dependent phosphorylation of gephyrin at S270. Here, we studied the effects of artemisinin on gephyrin in the brain of young APP-PS1 mice. We detected an additional increase of gephyrin protein level, elevated gephyrin phosphorylation at Ser270, and an increased amount of GABAAR-γ2 subunits after artemisinin-treatment. Interestingly, the CDK5 activator p35 was also upregulated. Moreover, we demonstrate decreased density of postsynaptic gephyrin and GABAAR-γ2 immunoreactivities in cultured hippocampal neurons expressing gephyrin with alanine mutations at two CDK5 phosphorylation sites. In addition, the activity-dependent modulation of synaptic protein density was abolished in neurons expressing gephyrin lacking one or both of these phosphorylation sites. Thus, our results reveal that artemisinin modulates expression as well as phosphorylation of gephyrin at sites that might have important impact on GABAergic synapses in AD.


Assuntos
Artemisininas , Proteínas de Transporte , Proteínas de Membrana , Animais , Artemisininas/farmacologia , Proteínas de Transporte/metabolismo , Células Cultivadas , Hipocampo/metabolismo , Camundongos , Fosforilação , Receptores de GABA-A/metabolismo , Sinapses/metabolismo , Ácido gama-Aminobutírico/metabolismo
4.
Mol Cell Neurosci ; 113: 103624, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33933588

RESUMO

Alzheimer's disease (AD) is the most frequent form of dementia, characterized histopathologically by the formation of amyloid plaques and neurofibrillary tangles in the brain. Amyloid ß-peptide (Aß) is a major component of amyloid plaques and is released together with carboxy-terminal fragments (CTFs) from the amyloid precursor protein (APP) through proteolytic cleavage, thought to contribute to synapse dysfunction and loss along the progression of AD. Artemisinins, primarily antimalarial drugs, reduce neuroinflammation and improve cognitive capabilities in mouse models of AD. Furthermore, artemisinins were demonstrated to target gephyrin, the main scaffold protein of inhibitory synapses and modulate GABAergic neurotransmission in vitro. Previously, we reported a robust decrease of inhibitory synapse proteins in the hippocampus of 12-month-old double transgenic APP-PS1 mice which overexpress in addition to the Swedish mutated form of the human APP a mutated presenilin 1 (PS1) gene and are characterized by a high plaque load at this age. Here, we provide in vivo evidence that treating these mice with artemisinin or its semisynthetic derivative artesunate in two different doses (10 mg/kg and 100 mg/kg), these compounds affect differently inhibitory synapse components, amyloid plaque load and APP-processing. Immunofluorescence microscopy demonstrated the rescue of gephyrin and γ2-GABAA-receptor protein levels in the brain of treated mice with both, artemisinin and artesunate, most efficiently with a low dose of artesunate. Remarkably, artemisinin reduced only in low dose the amyloid plaque load correlating with lower levels of mutated human APP (hAPPswe) whereas artesunate treatment in both doses resulted in significantly lower plaque numbers. Correspondingly, the level of APP-cleavage products, specifically the amount of CTFs in hippocampus homogenates was reduced significantly only by artesunate, in line with the findings in hAPPswe expressing cultured hippocampal neurons evidencing a concentration-dependent inhibition of CTF-release by artesunate already in the nanomolar range. Thus, our data support artemisinins as neuroprotective multi-target drugs, exhibiting a potent anti-amyloidogenic activity and reinforcing key proteins of inhibitory synapses.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Artesunato/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Sinapses/metabolismo , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Artesunato/farmacologia , Células Cultivadas , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Receptores de GABA-A/metabolismo , Sinapses/efeitos dos fármacos
5.
Histochem Cell Biol ; 156(1): 5-18, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33796945

RESUMO

Gephyrin is a multifunctional scaffolding protein anchoring glycine- and subtypes of GABA type A- receptors at inhibitory postsynaptic membrane specializations by binding to the microtubule (MT) and/or the actin cytoskeleton. However, the conditions under which gephyrin can bind to MTs and its regulation are currently unknown. Here, we demonstrate that during the purification of MTs from rat brain by sedimentation of polymerized tubulin using high-speed centrifugation a fraction of gephyrin was bound to MTs, whereas gephyrin phosphorylated at the CDK5-dependent site Ser270 was detached from MTs and remained in the soluble protein fraction. Moreover, after collybistin fostered phosphorylation at Ser270 the binding of a recombinant gephyrin to MTs was strongly reduced in co-sedimentation assays. Correspondingly, upon substitution of wild-type gephyrin with recombinant gephyrin carrying alanine mutations at putative CDK5 phosphorylation sites the binding of gephyrin to MTs was increased. Furthermore, the analysis of cultured HEK293T and U2OS cells by immunofluorescence-microscopy disclosed a dispersed and punctuated endogenous gephyrin immunoreactivity co-localizing with MTs which was evidently not phosphorylated at Ser270. Thus, our study provides additional evidence for the binding of gephyrin to MTs in brain tissue and in in vitro cell systems. More importantly, our findings indicate that gephyrin-MT binding is restricted to a specific gephyrin fraction and depicts phosphorylation of gephyrin as a regulatory mechanism of this process by showing that soluble gephyrin detached from MTs can be detected specifically with the mAb7a antibody, which recognizes the Ser270 phosphorylated- version of gephyrin.


Assuntos
Proteínas de Membrana/metabolismo , Microtúbulos/metabolismo , Serina/metabolismo , Animais , Sítios de Ligação , Células Cultivadas , Células HEK293 , Humanos , Proteínas de Membrana/análise , Fosforilação , Ratos
6.
J Alzheimers Dis ; 74(4): 1167-1187, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32144981

RESUMO

Early changes in inhibitory synapse connectivities are thought to contribute to the excitation/inhibition imbalance preceding neurodegeneration in Alzheimer's disease (AD). Recently, we reported a robust increase in the level of different key-proteins of inhibitory synapses in hippocampal subregions of pre-symptomatic APPswe-PS1 mice, a model of cerebral amyloidosis. Besides increased inhibitory synaptic clusters on parvalbumin-positive projections in CA1 and CA3, we observed impaired communication between these two hippocampal areas of young APP-PS1 mice. Interestingly, the phosphorylation of gephyrin, a major organizer of inhibitory synapses, was also increased. Here, we demonstrate that the protein levels of CDK5, a kinase involved in the phosphorylation of gephyrin, and its regulatory protein p35 are also significantly increased in hippocampal subregions of young APP-PS1 mice. Consistently, the expression of hAPP-swe in cultured hippocampal neurons resulted in higher p35-protein levels, indicating a possible molecular link between increased Aß-production and the elevated p35/CDK5 levels seen in vivo. Further, a shRNA mediated downregulation of p35-expression in hippocampal neurons correlated with a decrease in gephyrin phosphorylation and in a reduced density of synaptic γ2-GABAA-receptor clusters. These findings, together with the detection of gephyrin colocalization with CDK5 and p35 by immunostaining and proximity ligation experiments in vivo and in vitro, are supporting our hypothesis that Aß has a profound impact on inhibitory network properties, likely mediated at least in part by p35/CDK5 signaling. This further underscores the impact of altered inhibitory synaptic transmission in AD.


Assuntos
Neuropatias Amiloides/metabolismo , Peptídeos beta-Amiloides/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Fosfotransferases/metabolismo , Transdução de Sinais , Sinapses/fisiologia , Neuropatias Amiloides/fisiopatologia , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Células Cultivadas , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ratos , Sinapses/metabolismo
7.
PLoS One ; 14(1): e0209228, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30645585

RESUMO

Several lines of evidence imply changes in inhibitory interneuron connectivity and subsequent alterations in oscillatory network activities in the pathogenesis of Alzheimer's Disease (AD). Recently, we provided evidence for an increased immunoreactivity of both the postsynaptic scaffold protein gephyrin and the GABAA receptor γ2-subunit in the hippocampus of young (1 and 3 months of age), APPPS1 mice. These mice represent a well-established model of cerebral amyloidosis, which is a hallmark of human AD. In this study, we demonstrate a robust increase of parvalbumin immunoreactivity and accentuated projections of parvalbumin positive (PV+) interneurons, which target perisomatic regions of pyramidal cells within the hippocampal subregions CA1 and CA3 of 3-month-old APPPS1 mice. Colocalisation studies confirmed a significant increase in the density of PV+ projections labeled with antibodies against a presynaptic (vesicular GABA transporter) and a postsynaptic marker (gephyrin) of inhibitory synapses within the pyramidal cell layer of CA1 and CA3. As perisomatic inhibition by PV+-interneurons is crucial for the generation of hippocampal network oscillations involved in spatial processing, learning and memory formation we investigated the impact of the putative enhanced perisomatic inhibition on two types of fast neuronal network oscillations in acute hippocampal slices: 1. spontaneously occurring sharp wave-ripple complexes (SPW-R), and 2. cholinergic γ-oscillations. Interestingly, both network patterns were generally preserved in APPPS1 mice similar to WT mice. However, the comparison of simultaneous CA3 and CA1 recordings revealed that the incidence and amplitude of SPW-Rs were significantly lower in CA1 vs CA3 in APPPS1 slices, whereas the power of γ-oscillations was significantly higher in CA3 vs CA1 in WT-slices indicating an impaired communication between the CA3 and CA1 network activities in APPPS1 mice. Taken together, our data demonstrate an increased GABAergic synaptic output of PV+ interneurons impinging on pyramidal cells of CA1 and CA3, which might limit the coordinated cross-talk between these two hippocampal areas in young APPPS1 mice and mediate long-term changes in synaptic inhibition during progression of amyloidosis.


Assuntos
Doença de Alzheimer/metabolismo , Amiloidose/metabolismo , Hipocampo/metabolismo , Potenciais de Ação , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Amiloidose/genética , Amiloidose/patologia , Animais , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/patologia , Região CA3 Hipocampal/metabolismo , Região CA3 Hipocampal/patologia , Modelos Animais de Doenças , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/patologia , Ritmo Gama , Hipocampo/patologia , Humanos , Técnicas In Vitro , Interneurônios/metabolismo , Interneurônios/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rede Nervosa/metabolismo , Rede Nervosa/patologia , Parvalbuminas/metabolismo , Presenilina-1/genética , Células Piramidais/metabolismo , Células Piramidais/patologia , Sinapses/metabolismo
8.
Histochem Cell Biol ; 150(5): 489-508, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30264265

RESUMO

Scaffolding proteins underlying postsynaptic membrane specializations are important structural and functional components of both excitatory and inhibitory synapses. At inhibitory synapses, gephyrin was identified as anchoring protein. Gephyrin self-assembles into a complex flat submembranous lattice that slows the lateral mobility of glycine and GABAA receptors, thus allowing for their clustering at postsynaptic sites. The structure and stability of the gephyrin lattice is dynamically regulated by posttranslational modifications and interactions with binding partners. As gephyrin is the core scaffolding protein for virtually all inhibitory synapses, any changes in the structure or stability of its lattice can profoundly change the packing density of inhibitory receptors and, therefore, alter inhibitory drive. Intriguingly, gephyrin plays a completely independent role in non-neuronal cells, where it facilitates two steps in the biosynthesis of the molybdenum cofactor. In this review, we provide an overview of the role of gephyrin at inhibitory synapses and beyond. We discuss its dynamic regulation, the nanoscale architecture of its synaptic lattice, and the implications of gephyrin dysfunction for neuropathologic conditions, such as Alzheimer's disease and epilepsy.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Sinapses/efeitos dos fármacos , Animais , Proteínas de Transporte/química , Humanos , Proteínas de Membrana/química , Sinapses/metabolismo
9.
Am J Pathol ; 186(9): 2279-91, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27423698

RESUMO

The pathogenesis of Alzheimer disease (AD) is thought to begin many years before the diagnosis of dementia. Accumulating evidence indicates the involvement of GABAergic neurotransmission in the physiopathology of AD. However, in comparison to excitatory synapses, the structural and functional alterations of inhibitory synapses in AD are less well characterized. We studied the expression and distribution of proteins specific for inhibitory synapses in hippocampal areas of APPPS1 mice at different ages. Interestingly, by immunoblotting and confocal fluorescence microscopy, we disclosed a robust increase in the expression of gephyrin, an organizer of ligand-gated ion channels at inhibitory synapses in hippocampus CA1 and dentate gyrus of young presymptomatic APPPS1 mice (1 to 3 months) as compared to controls. The postsynaptic γ2-GABA(A)-receptor subunit and the presynaptic vesicular inhibitory amino acid transporter protein showed similar expression patterns. In contrast, adult transgenic animals (12 months) displayed decreased levels of these proteins in comparison to wild type in hippocampus areas devoid of amyloid plaques. Within most plaques, strong gephyrin immunoreactivity was detected, partially colocalizing with vesicular amino acid transporter and GABA(A)-receptor γ2 subunit immunoreactivities. Our results indicate a biphasic alteration in expression of hippocampal inhibitory synapse components in AD. Altered inhibition of neurotransmission might be an early prognostic marker and might even be involved in the pathogenesis of AD.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Animais , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/patologia , Immunoblotting , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Sinapses/metabolismo , Sinapses/patologia , Transmissão Sináptica/fisiologia
10.
Mol Cell Neurosci ; 72: 101-13, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26829712

RESUMO

Mutations that result in the defective trafficking of γ2 subunit containing GABAA receptors (γ2-GABAARs) are known to reduce synaptic inhibition. Whether perturbed clustering of non-mutated GABAARs similarly reduces synaptic inhibition in vivo is less clear. In this study we provide evidence that the loss of postsynaptic γ2-GABAARs upon postnatal ablation of gephyrin, the major scaffolding protein of inhibitory postsynapses, from mature principal neurons within the forebrain results in reduced induction of long-term potentiation (LTP) and impaired network excitability within the hippocampal dentate gyrus. The preferential reduction in not only synaptic γ2-GABAAR cluster number at dendritic sites but also the decrease in γ2-GABAAR density within individual clusters at dendritic inhibitory synapses suggests that distal synapses are more sensitive to the loss of gephyrin expression than proximal synapses. The fact that these mice display behavioural features of anxiety and epilepsy emphasises the importance of postsynaptic γ2-GABAAR clustering for synaptic inhibition.


Assuntos
Proteínas de Transporte/genética , Potenciação de Longa Duração , Proteínas de Membrana/genética , Prosencéfalo/metabolismo , Receptores de GABA-A/metabolismo , Potenciais Sinápticos , Animais , Proteínas de Transporte/metabolismo , Linhagem Celular , Giro Denteado/citologia , Giro Denteado/metabolismo , Giro Denteado/fisiologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/fisiologia , Prosencéfalo/citologia , Prosencéfalo/fisiologia , Receptores de GABA-A/genética , Sinapses/metabolismo , Sinapses/fisiologia
11.
Histochem Cell Biol ; 145(6): 637-46, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26780567

RESUMO

Synaptic inhibition in the spinal cord is mediated mainly by strychnine-sensitive glycine (GlyRs) and by γ-aminobutyric acid type A receptors (GABAAR). During neuronal maturation, neonatal GlyRs containing α2 subunits are replaced by adult-type GlyRs harboring α1 and α3 subunits. At the same time period of postnatal development, the transmembrane chloride gradient is changed due to increased expression of the potassium-chloride cotransporter (KCC2), thereby shifting the GABA- and glycine-mediated synaptic currents from mostly excitatory depolarization to inhibitory hyperpolarization. Here, we used RNA interference to suppress KCC2 expression during in vitro maturation of spinal cord neurons. Morphological analysis revealed reduced numbers and size of dendritic GlyR clusters containing α1 subunits but not of clusters harboring neonatal α2 subunits. The morphological changes were accompanied by decreased frequencies and amplitudes of glycinergic miniature inhibitory currents, whereas GABAergic synapses appeared functionally unaltered. Our data indicate that KCC2 exerts specific functions for the maturation of glycinergic synapses in cultured spinal cord neurons.


Assuntos
Glicina/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Medula Espinal/citologia , Simportadores/deficiência , Simportadores/metabolismo , Sinapses/metabolismo , Células Cultivadas , Humanos
12.
PLoS One ; 9(8): e104256, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25093719

RESUMO

CDK5 has been implicated in neural functions including growth, neuronal migration, synaptic transmission and plasticity of excitatory chemical synapses. Here we report robust effects of CDK5 on phosphorylation of the postsynaptic scaffold protein gephyrin and clustering of inhibitory GABAA receptors in hippocampal neurons. shRNA-mediated knockdown of CDK5 and pharmacological inhibition of cyclin-dependent kinases reduced phosphorylated gephyrin clusters and postsynaptic γ2-containing GABAA receptors. Phosphorylation of S270 is antagonized by PP1/PP2a phosphatase and site-directed mutagenesis and in vitro phosphorylation experiments indicate that S270 is a putative CDK5 phosphorylation site of gephyrin. Our data suggest that CDK5 plays an essential role for the stability of gephyrin-dependent GABAA receptor clusters in hippocampal neurons.


Assuntos
Proteínas de Transporte/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Proteínas de Membrana/metabolismo , Células Piramidais/metabolismo , Receptores de GABA-A/metabolismo , Sinapses/metabolismo , Animais , Células Cultivadas , Quinase 5 Dependente de Ciclina/genética , Expressão Gênica , Técnicas de Silenciamento de Genes , Fosforilação , Ligação Proteica , Proteína Fosfatase 1/metabolismo , Proteína Fosfatase 2/metabolismo , Subunidades Proteicas , Ratos , Receptores de GABA-A/química
13.
Histochem Cell Biol ; 140(6): 603-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23839781

RESUMO

Postsynaptic receptor scaffold proteins play an important role for concentrating receptor molecules in postsynaptic membranes of central nervous system synapses. In particular, clustering of glycine receptors and different types of GABAA-receptors depends on the scaffold protein gephyrin, which is thought to anchor these receptors to the cytoskeleton. Eukaryotic elongation factor 1A (eEF1A) is a component of the protein synthesis machinery. In addition, it binds and bundles actin and was shown to interact with microtubules. Therefore, it might be involved in regulating the cytoskeletal dynamics in neurons and thereby modulate receptor cluster formation and/or maintenance. In this study, we demonstrate partial colocalization of gephyrin and F-actin along filamentous structures in rat hippocampal neurons. Overexpression of eEF1A in cultured hippocampal neurons results in a significant increase in number, size and density of postsynaptic gephyrin clusters after 21 days in vitro. These findings suggest that eEF1A contributes to the morphology of postsynaptic membrane specializations at inhibitory synapses.


Assuntos
Proteínas de Transporte/biossíntese , Hipocampo/citologia , Proteínas de Membrana/biossíntese , Neurônios/citologia , Neurônios/metabolismo , Fator 1 de Elongação de Peptídeos/metabolismo , Sinapses/metabolismo , Animais , Proteínas de Transporte/metabolismo , Células Cultivadas , Proteínas de Membrana/metabolismo , Fator 1 de Elongação de Peptídeos/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratos , Ratos Wistar
14.
J Biol Chem ; 287(37): 30952-66, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22778260

RESUMO

Gephyrin is a scaffold protein essential for the postsynaptic clustering of inhibitory glycine and different subtypes of GABA(A) receptors. The cellular and molecular mechanisms involved in gephyrin-mediated receptor clustering are still not well understood. Here we provide evidence that the gephyrin-binding protein collybistin is involved in regulating the phosphorylation of gephyrin. We demonstrate that the widely used monoclonal antibody mAb7a is a phospho-specific antibody that allows the cellular and biochemical analysis of gephyrin phosphorylation at Ser-270. In addition, another neighbored epitope determinant was identified at position Thr-276. Analysis of the double mutant gephyrin(T276A,S277A) revealed significant reduction in gephyrin cluster formation and altered oligomerization behavior of gephyrin. Moreover, pharmacological inhibition of cyclin-dependent kinases in hippocampal neurons reduced postsynaptic gephyrin mAb7a immunoreactivities. In vitro phosphorylation assays and phosphopeptide competition experiments revealed a phosphorylation at Ser-270 depending on enzyme activities of cyclin-dependent kinases CDK1, -2, or -5. These data indicate that collybistin and cyclin-dependent kinases are involved in regulating the phosphorylation of gephyrin at postsynaptic membrane specializations.


Assuntos
Proteínas de Transporte/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Hipocampo/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Substituição de Aminoácidos , Animais , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Proteínas de Transporte/genética , Células Cultivadas , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 5 Dependente de Ciclina/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Hipocampo/citologia , Humanos , Proteínas de Membrana/genética , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Fosforilação/fisiologia , Ratos , Fatores de Troca de Nucleotídeo Guanina Rho , Membranas Sinápticas/genética , Membranas Sinápticas/metabolismo
15.
Mol Cell Neurosci ; 50(3-4): 250-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22659578

RESUMO

Collybistin (Cb) is a brain specific guanine nucleotide exchange factor that interacts with the inhibitory postsynaptic scaffold protein gephyrin. Cb is essential for the postsynaptic clustering of gephyrin and major GABA(A) receptor subtypes during the formation and maintenance of GABAergic synapses in the hippocampus and other areas of the forebrain. In the rat, four distinct splice variants (Cb1, Cb2(SH3-), Cb2(SH3+) and Cb3), have been described, which differ in their C-termini (Cb1-3) and in respect of the SH3-domain that is absent in Cb2(SH3-). In the human brain, only a single isoform (hPEM2) corresponding to Cb3, was found to be expressed. This has been implicated in neurological defects such as hyperekplexia, epilepsy, anxiety, aggression and mental retardation. In this study, we address the functional significance of the differentially spliced Cb isoforms by generating a shRNA-mediated knock-down of endogenous Cb in hippocampal cultured neurons that is subsequently rescued by the expression of distinct Cb isoforms. We found that the Cb knock-down induced impairment in GABAergic neurotransmission could be rescued by the expression of any of the Cb isoforms, independent of their C-termini or the presence of the SH3-domain in the N-terminal region. Thus, the different Cb isoforms all confer basic functionality.


Assuntos
Neurônios GABAérgicos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Receptores de GABA-A/metabolismo , Sinapses/metabolismo , Animais , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Hipocampo/metabolismo , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , RNA Interferente Pequeno , Ratos , Fatores de Troca de Nucleotídeo Guanina Rho , Potenciais Sinápticos
16.
Histochem Cell Biol ; 130(4): 617-33, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18719933

RESUMO

Synapses can be considered chemical machines, which are optimized for fast and repeated exocytosis of neurotransmitters from presynaptic nerve terminals and the reliable electrical or chemical transduction of neurotransmitter binding to the appropriate receptors in the postsynaptic membrane. Therefore, synapses share a common repertoire of proteins like, e.g., the release machinery and certain cell adhesion molecules. This basic repertoire must be extended in order to generate specificity of neurotransmission and allow plastic changes, which are considered the basis of developmental and/or learning processes. Here, we focus on these complementary molecules located in the presynaptic terminal and postsynaptic membrane specializations of glycinergic synapses. Moreover, as specificity of neurotransmission in this system is established by the specific binding of the neurotransmitter to its receptor, we review the molecular properties of glycine receptor subunits and their assembly into functional glycine receptors with different functional characteristics. The past years have revealed that the molecular machinery underlying inhibitory and especially glycinergic postsynaptic membrane specializations is more complex and dynamic than previously anticipated from morphological studies. The emerging features include structural components as well as signaling modules, which could confer the plasticity required for the proper function of distinct motor and sensory functions.


Assuntos
Glicina/metabolismo , Sinapses/metabolismo , Animais , Sítios de Ligação , Glicina/antagonistas & inibidores , Humanos , Ligantes , Modelos Neurológicos , Terminações Pré-Sinápticas/metabolismo , Receptores de Glicina/antagonistas & inibidores , Receptores de Glicina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Membranas Sinápticas/efeitos dos fármacos , Membranas Sinápticas/metabolismo
17.
PLoS One ; 3(7): e2681, 2008 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-18629001

RESUMO

Functional and structural alterations of clustered postsynaptic ligand gated ion channels in neuronal cells are thought to contribute to synaptic plasticity and memory formation in the human brain. Here, we describe a novel molecular mechanism for structural alterations of NR1 subunits of the NMDA receptor. In cultured rat spinal cord neurons, chronic NMDA receptor stimulation induces disappearance of extracellular epitopes of NMDA receptor NR1 subunits, which was prevented by inhibiting matrix metalloproteinases (MMPs). Immunoblotting revealed the digestion of solubilized NR1 subunits by MMP-3 and identified a fragment of about 60 kDa as MMPs-activity-dependent cleavage product of the NR1 subunit in cultured neurons. The expression of MMP-3 in the spinal cord culture was shown by immunoblotting and immunofluorescence microscopy. Recombinant NR1 glycine binding protein was used to identify MMP-3 cleavage sites within the extracellular S1 and S2-domains. N-terminal sequencing and site-directed mutagenesis revealed S542 and L790 as two putative major MMP-3 cleavage sites of the NR1 subunit. In conclusion, our data indicate that MMPs, and in particular MMP-3, are involved in the activity dependent alteration of NMDA receptor structure at postsynaptic membrane specializations in the CNS.


Assuntos
Glicina/química , Metaloproteinase 3 da Matriz/química , N-Metilaspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Animais , Sistema Nervoso Central/metabolismo , Plasticidade Neuronal , Neurônios/metabolismo , Proteína Quinase C/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Receptores de N-Metil-D-Aspartato/química , Proteínas Recombinantes/química , Medula Espinal/metabolismo
18.
J Biol Chem ; 282(52): 37783-93, 2007 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-17965018

RESUMO

The translation eukaryotic elongation factor 1alpha (eEF1A) is a monomeric GTPase involved in protein synthesis. In addition, this protein is thought to participate in other cellular functions such as actin bundling, cell cycle regulation, and apoptosis. Here we show that eEF1A is associated with the alpha2 subunit of the inhibitory glycine receptor in pulldown experiments with rat brain extracts. Moreover, additional proteins involved in translation like ribosomal S6 protein and p70 ribosomal S6 protein kinase as well as ERK1/2 and calcineurin were identified in the same pulldown approaches. Glycine receptor activation in spinal cord neurons cultured for 1 week resulted in an increased phosphorylation of ribosomal S6 protein. Immunocytochemistry showed that eEF1A and ribosomal S6 protein are localized in the soma, dendrites, and at synapses of cultured hippocampal and spinal cord neurons. Consistent with our biochemical data, immunoreactivities of both proteins were partially overlapping with glycine receptor immunoreactivity in cultured spinal cord and hippocampal neurons. After 5 weeks in culture, eEF1A immunoreactivity was redistributed to the cytoskeleton in about 45% of neurons. Interestingly, the degree of redistribution could be increased at earlier stages of in vitro differentiation by inhibition of either the ERK1/2 pathway or glycine receptors and simultaneous N-methyl-D-aspartate receptor activation. Our findings suggest a functional coupling of eEF1A with both inhibitory and excitatory receptors, possibly involving the ERK-signaling pathway.


Assuntos
Citoesqueleto/metabolismo , Fator 1 de Elongação de Peptídeos/fisiologia , Biossíntese de Proteínas , Receptores de Glicina/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Sinapses , Animais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glicina/metabolismo , Hipocampo/metabolismo , Humanos , Neurônios/metabolismo , Fator 1 de Elongação de Peptídeos/biossíntese , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais , Medula Espinal/metabolismo
19.
Neuropharmacology ; 47(3): 373-80, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15275826

RESUMO

Membrane currents conducted by the NMDA receptor channels were investigated in cultured cortical neurons and TsA cells transfected with NR1-1a/NR2A subunits of the NMDA receptor. The whole-cell recording technique was used. Current transients evoked by bath application of NMDA for 5 s were characterized by a fast peak and a slow decay to 46.1 +/-15.5% of the peak level at the end. When NMDA was applied in combination with various lipid emulsions (Intralipid, ClinOleic, Lipofundin or Abbolipid, the NMDA-induced currents were reduced, although this reduction did not affect the fast peak, it did affect the decay phase. The amount of reduction depended on the concentration of the lipids (in the case of Abbolipid diluted at 1:40, the current at the end of the 5-s drug application was approximately 2/3 of control). When Abbolipid was applied 40 s before NMDA, peak and late current were reduced to approximately 2/3. The effect of current reduction was the same at either of the two chosen membrane potentials (-80 and +40 mV) which indicates that the effect was not mediated by contamination of the emulsions with Mg(2+). The current reduction produced by Abbolipid was about the same in native neuronal cells and in TsA cells expressing the NR1-1a/NR2A subunits. The current-reducing effect of the lipid emulsions may add to the anesthetic, analgesic and neuroprotective effects seen with hypnotics administered by way of lipid carriers.


Assuntos
Agonistas de Aminoácidos Excitatórios/farmacologia , Lipídeos/farmacologia , N-Metilaspartato/farmacologia , Neurônios/efeitos dos fármacos , Animais , Células Cultivadas , Córtex Cerebral/citologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Embrião de Mamíferos , Emulsões , Humanos , Rim , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Neurônios/fisiologia , Técnicas de Patch-Clamp/métodos , Receptores de N-Metil-D-Aspartato/metabolismo , Transfecção
20.
Biochem Biophys Res Commun ; 305(3): 476-83, 2003 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-12763017

RESUMO

Glycine is an essential co-agonist of the excitatory N-methyl-D-aspartate (NMDA) receptor. The glycine binding site of this subtype of ionotropic glutamate receptors is formed by the S1 and S2 regions of the NR1 subunit. Here, different S1S2 fusion proteins were expressed and purified from Escherichia coli cultures, and refolding protocols were established allowing the production of 30 mg of soluble S1S2 fusion protein from 1 liter bacterial culture. After affinity purification and renaturation, two of the fusion proteins (S1S2 and S1S2-V1) bound the competitive glycine site antagonist [3H]MDL105,519 with K(d) values of 9.35 and 3.9 nM, respectively. In contrast, with three other constructs (S1S2M, S1S2-V2, and -V3) saturable ligand binding could not be obtained. These results redefine the S1S2 domains required for high-affinity glycine binding. Furthermore, our high-affinity binding proteins may be used for the large-scale production of the glycine binding core region for future structural studies.


Assuntos
Escherichia coli/genética , Glicina/metabolismo , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/genética , Sequência de Aminoácidos , Sítios de Ligação , Expressão Gênica , Indóis/metabolismo , Peso Molecular , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Deleção de Sequência , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...