Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSphere ; 8(5): e0040223, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37747201

RESUMO

Mycobacteria utilize type VII secretion systems (T7SSs) to secrete proteins across their highly hydrophobic and diderm cell envelope. Pathogenic mycobacteria have up to five different T7SSs, called ESX-1 to ESX-5, which are crucial for growth and virulence. Here, we use a functionally reconstituted ESX-5 system in the avirulent species Mycobacterium smegmatis that lacks ESX-5, to define the role of each esx-5 gene in system functionality. By creating an array of gene deletions and assessing protein levels of components and membrane complex assembly, we observed that only the five components of the inner membrane complex are required for its assembly. However, in addition to these five core components, active secretion also depends on both the Esx and PE/PPE substrates. Tagging the PPE substrates followed by subcellular fractionation, surface labeling and membrane extraction showed that these proteins localize to the mycobacterial outer membrane. This indicates that they could play a role in secretion across this enigmatic outer barrier. These results provide the first full overview of the role of each esx-5 gene in T7SS functionality. IMPORTANCE Pathogenic mycobacteria, such as the notorious Mycobacterium tuberculosis, are highly successful as pathogens, in part due to their specific and diderm cell envelope, with a mycolic acid-containing outer membrane. The architecture of this highly impermeable membrane is little understood and the proteins that populate it even less so. To transport proteins across their cell envelope, mycobacteria employ a specialized transport pathway called type VII secretion. While recent studies have elucidated the type VII secretion membrane channel that mediates transport across the inner membrane, the identity of the outer membrane channel remains a black box. Here, we show evidence that specific substrates of the type VII pathway could form these channels. Elucidating the pathway and mechanism of protein secretion through the mycobacterial outer membrane will allow its exploitation for the development of novel mycobacterial therapeutics.


Assuntos
Mycobacterium tuberculosis , Sistemas de Secreção Tipo VII , Sistemas de Secreção Tipo VII/genética , Sistemas de Secreção Tipo VII/química , Sistemas de Secreção Tipo VII/metabolismo , Proteínas de Bactérias/metabolismo , Canais Iônicos/metabolismo , Equipamento de Proteção Individual
2.
mBio ; 12(2)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33653883

RESUMO

CpnT, a NAD+ glycohydrolase, is the only known toxin that is secreted by Mycobacterium tuberculosis CpnT is composed of two domains; the C-terminal domain is the toxin, whereas the N-terminal domain is required for secretion. CpnT shows characteristics of type VII secretion (T7S) substrates, including a predicted helix-turn-helix domain followed by a secretion motif (YxxxE). Disruption of this motif indeed abolished CpnT secretion. By analyzing different mutants, we established that CpnT is specifically secreted by the ESX-5 system in Mycobacterium marinum under axenic conditions and during macrophage infection. Surprisingly, intracellular secretion of CpnT was also dependent on both ESX-1 and ESX-4. These secretion defects could be partially rescued by coinfection with wild-type bacteria, indicating that secreted effectors are involved in this process. In summary, our data reveal that three different type VII secretion systems have to be functional in order to observe intracellular secretion of the toxin CpnT.IMPORTANCE For decades, it was believed that the intracellular pathogen M. tuberculosis does not possess toxins. Only fairly recently it was discovered that CpnT is a potent secreted toxin of M. tuberculosis, causing necrotic cell death in host cells. However, until now the secretion pathway remained unknown. In our study, we were able to identify CpnT as a substrate of the mycobacterial type VII secretion system. Pathogenic mycobacteria have up to five different type VII secretion systems, called ESX-1 to ESX-5, which play distinct roles for the pathogen during growth or infection. We were able to elucidate that CpnT is exclusively secreted by the ESX-5 system in bacterial culture. However, to our surprise we discovered that, during infection studies, CpnT secretion relies on intact ESX-1, ESX-4, and ESX-5 systems. We elucidate for the first time the intertwined interplay of three different and independent secretion systems to secrete one substrate during infection.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Mycobacterium tuberculosis/metabolismo , Via Secretória , Sistemas de Secreção Tipo VII/metabolismo , Fatores de Virulência/metabolismo , Animais , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Clonagem Molecular , Camundongos , Mycobacterium marinum/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Células RAW 264.7 , Sistemas de Secreção Tipo VII/genética , Fatores de Virulência/genética
3.
Immunity ; 15(1): 83-93, 2001 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11485740

RESUMO

Vgamma2Vdelta2 T cells comprise 2%-5% of human peripheral blood T cells, recognize ubiquitous nonpeptide antigens, and expand up to 50-fold during microbial infection. It is not clear why these Vgamma2Vdelta2 T cells expand only after microbial infection. We show here that the stress-inducible molecule, MICA, is induced on the surface of dendritic and epithelial cells by infection with M. tuberculosis in vitro and in vivo. MICA engagement by the activating receptor, NKG2D, present on Vgamma2Vdelta2 T cells, resulted in a substantial enhancement of the TCR-dependent Vgamma2Vdelta2 T cell response to nonpeptide antigens and protein superantigens alike. Thus, a MICA-NKG2D interaction may be necessary for an effective innate immune response to microbe-associated antigens that also are constitutively present in vivo.


Assuntos
Antígenos de Histocompatibilidade Classe I/fisiologia , Receptores de Antígenos de Linfócitos T gama-delta/fisiologia , Linfócitos T/fisiologia , Citocinas/biossíntese , Citotoxicidade Imunológica , Humanos , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Receptores Imunológicos/fisiologia , Receptores de Células Matadoras Naturais , Tuberculose/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...