Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(6): e0235017, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32603356

RESUMO

INTRODUCTION: Athletes and military personnel are both at risk of disabling injuries due to extreme physical activity. A method to predict which individuals might be more susceptible to injury would be valuable, especially in the military where basic recruits may be discharged from service due to injury. We postulate that certain body characteristics may be used to predict risk of injury with physical activity. METHODS: US Army basic training recruits between the ages of 17 and 21 (N = 17,680, 28% female) were scanned for uniform fitting using the 3D body imaging scanner, Human Solutions of North America at Fort Jackson, SC. From the 3D body imaging scans, a database consisting of 161 anthropometric measurements per basic training recruit was used to predict the probability of discharge from the US Army due to injury. Predictions were made using logistic regression, random forest, and artificial neural network (ANN) models. Model comparison was done using the area under the curve (AUC) of a ROC curve. RESULTS: The ANN model outperformed two other models, (ANN, AUC = 0.70, [0.68,0.72], logistic regression AUC = 0.67, [0.62,0.72], random forest AUC = 0.65, [0.61,0.70]). CONCLUSIONS: Body shape profiles generated from a three-dimensional body scanning imaging in military personnel predicted dischargeable physical injury. The ANN model can be programmed into the scanner to deliver instantaneous predictions of risk, which may provide an opportunity to intervene to prevent injury.


Assuntos
Antropometria/métodos , Imageamento Tridimensional , Aprendizado de Máquina , Militares/estatística & dados numéricos , Traumatismos Ocupacionais/epidemiologia , Adolescente , Feminino , Humanos , Masculino , Militares/educação , Modelos Estatísticos , Traumatismos Ocupacionais/etiologia , Resistência Física , Aptidão Física , Curva ROC , Medição de Risco/métodos , Fatores de Risco , Estados Unidos , Adulto Jovem
2.
Eur J Clin Nutr ; 73(2): 200-208, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30315314

RESUMO

A long-standing question in nutrition and obesity research involves quantifying the relationship between body fat and anthropometry. To date, the mathematical formulation of these relationships has relied on pairing easily obtained anthropometric measurements such as the body mass index (BMI), waist circumference, or hip circumference to body fat. Recent advances in 3D body shape imaging technology provides a new opportunity for quickly and accurately obtaining hundreds of anthropometric measurements within seconds, however, there does not yet exist a large diverse database that pairs these measurements to body fat. Herein, we leverage 3D scanned anthropometry obtained from a population of United States Army basic training recruits to derive four subpopulations of homogenous body shape archetypes using a combined principal components and cluster analysis. While the Army database was large and diverse, it did not have body composition measurements. Therefore, these body shape archetypes were paired to an alternate smaller sample of participants from the Pennington Biomedical Research Center in Baton Rouge, LA that were not only similarly imaged by the same 3D scanning machine, but also had concomitant measures of body composition by dual-energy X-ray absorptiometry body composition. With this enhanced ability to obtain anthropometry through 3D scanning quickly of large populations, our machine learning approach for pairing body shapes from large datasets to smaller datasets that also contain state-of-the-art body composition measurements can be extended to pair other health outcomes to 3D body shape anthropometry.


Assuntos
Absorciometria de Fóton , Composição Corporal , Humanos , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...