Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain ; 146(4): 1496-1510, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36073231

RESUMO

The protein phosphatase 2A complex (PP2A), the major Ser/Thr phosphatase in the brain, is involved in a number of signalling pathways and functions, including the regulation of crucial proteins for neurodegeneration, such as alpha-synuclein, tau and LRRK2. Here, we report the identification of variants in the PTPA/PPP2R4 gene, encoding a major PP2A activator, in two families with early-onset parkinsonism and intellectual disability. We carried out clinical studies and genetic analyses, including genome-wide linkage analysis, whole-exome sequencing, and Sanger sequencing of candidate variants. We next performed functional studies on the disease-associated variants in cultured cells and knock-down of ptpa in Drosophila melanogaster. We first identified a homozygous PTPA variant, c.893T>G (p.Met298Arg), in patients from a South African family with early-onset parkinsonism and intellectual disability. Screening of a large series of additional families yielded a second homozygous variant, c.512C>A (p.Ala171Asp), in a Libyan family with a similar phenotype. Both variants co-segregate with disease in the respective families. The affected subjects display juvenile-onset parkinsonism and intellectual disability. The motor symptoms were responsive to treatment with levodopa and deep brain stimulation of the subthalamic nucleus. In overexpression studies, both the PTPA p.Ala171Asp and p.Met298Arg variants were associated with decreased PTPA RNA stability and decreased PTPA protein levels; the p.Ala171Asp variant additionally displayed decreased PTPA protein stability. Crucially, expression of both variants was associated with decreased PP2A complex levels and impaired PP2A phosphatase activation. PTPA orthologue knock-down in Drosophila neurons induced a significant impairment of locomotion in the climbing test. This defect was age-dependent and fully reversed by L-DOPA treatment. We conclude that bi-allelic missense PTPA variants associated with impaired activation of the PP2A phosphatase cause autosomal recessive early-onset parkinsonism with intellectual disability. Our findings might also provide new insights for understanding the role of the PP2A complex in the pathogenesis of more common forms of neurodegeneration.


Assuntos
Deficiência Intelectual , Transtornos Parkinsonianos , Animais , Encéfalo/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Deficiência Intelectual/genética , Transtornos Parkinsonianos/genética , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Fosfoproteínas Fosfatases/metabolismo
2.
Brain Commun ; 4(4): fcac175, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35855480

RESUMO

Multiple system atrophy is considered a sporadic disease, but neuropathologically confirmed cases with a family history of parkinsonism have been occasionally described. Here we report a North-Bavarian (colloquially, Lion's tail region) six-generation pedigree, including neuropathologically confirmed multiple system atrophy and Parkinson's disease with dementia. Between 2012 and 2020, we examined all living and consenting family members of age and calculated the risk of prodromal Parkinson's disease in those without overt parkinsonism. The index case and one paternal cousin with Parkinson's disease with dementia died at follow-up and underwent neuropathological examination. Genetic analysis was performed in both and another family member with Parkinson's disease. The index case was a female patient with cerebellar variant multiple system atrophy and a positive maternal and paternal family history for Parkinson's disease and dementia in multiple generations. The families of the index case and her spouse were genealogically related, and one of the spouse's siblings met the criteria for possible prodromal Parkinson's disease. Neuropathological examination confirmed multiple system atrophy in the index case and advanced Lewy body disease, as well as tau pathology in her cousin. A comprehensive analysis of genes known to cause hereditary forms of parkinsonism or multiple system atrophy lookalikes was unremarkable in the index case and the other two affected family members. Here, we report an extensive European pedigree with multiple system atrophy and Parkinson`s disease suggesting a complex underlying α-synucleinopathy as confirmed on neuropathological examination. The exclusion of known genetic causes of parkinsonism or multiple system atrophy lookalikes suggests that variants in additional, still unknown genes, linked to α-synucleinopathy lesions underlie such neurodegenerative clustering.

4.
Parkinsonism Relat Disord ; 94: 54-61, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34890876

RESUMO

INTRODUCTION: Sixteen subjects with biallelic WARS2 variants encoding the tryptophanyl mitochondrial aminoacyl-tRNA synthetase, presenting with a neonatal- or infantile-onset mitochondrial disease, have been reported to date. Here we present six novel cases with WARS2-related diseases and expand the spectrum to later onset phenotypes including dopa-responsive early-onset parkinsonism and progressive myoclonus-ataxia. METHODS: Six individuals from four families underwent whole-exome sequencing within research and diagnostic settings. Following the identification of a genetic defect, in-depth phenotyping and protein expression studies were performed. RESULTS: A relatively common (gnomAD MAF = 0.0033) pathogenic p.(Trp13Gly) missense variant in WARS2 was detected in trans in all six affected individuals in combination with different pathogenic alleles (exon 2 deletion in family 1; p.(Leu100del) in family 2; p.(Gly50Asp) in family 3; and p.(Glu208*) in family 4). Two subjects presented with action tremor around age 10-12 years and developed tremor-dominant parkinsonism with prominent neuropsychiatric features later in their 20s. Two subjects presented with a progressive myoclonus-ataxia dominant phenotype. One subject presented with spasticity, choreo-dystonia, myoclonus, and speech problems. One subject presented with speech problems, ataxia, and tremor. Western blotting analyses in patient-derived fibroblasts showed a markedly decreased expression of the full-length WARS2 protein in both subjects carrying p.(Trp13Gly) and an exon-2 deletion in compound heterozygosity. CONCLUSIONS: This study expands the spectrum of the disease to later onset phenotypes of early-onset tremor-dominant parkinsonism and progressive myoclonus-ataxia phenotypes.


Assuntos
Mioclonia , Transtornos Parkinsonianos , Degenerações Espinocerebelares , Triptofano-tRNA Ligase , Ataxia , Di-Hidroxifenilalanina , Humanos , Mutação , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/genética , Fenótipo , Tremor , Triptofano-tRNA Ligase/genética
5.
Ann Neurol ; 89(3): 485-497, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33236446

RESUMO

OBJECTIVE: The study was undertaken to identify a monogenic cause of early onset, generalized dystonia. METHODS: Methods consisted of genome-wide linkage analysis, exome and Sanger sequencing, clinical neurological examination, brain magnetic resonance imaging, and protein expression studies in skin fibroblasts from patients. RESULTS: We identified a heterozygous variant, c.388G>A, p.Gly130Arg, in the eukaryotic translation initiation factor 2 alpha kinase 2 (EIF2AK2) gene, segregating with early onset isolated generalized dystonia in 5 patients of a Taiwanese family. EIF2AK2 sequencing in 191 unrelated patients with unexplained dystonia yielded 2 unrelated Caucasian patients with an identical heterozygous c.388G>A, p.Gly130Arg variant, occurring de novo in one case, another patient carrying a different heterozygous variant, c.413G>C, p.Gly138Ala, and one last patient, born from consanguineous parents, carrying a third, homozygous variant c.95A>C, p.Asn32Thr. These 3 missense variants are absent from gnomAD, and are located in functional domains of the encoded protein. In 3 patients, additional neurological manifestations were present, including intellectual disability and spasticity. EIF2AK2 encodes a kinase (protein kinase R [PKR]) that phosphorylates eukaryotic translation initiation factor 2 alpha (eIF2α), which orchestrates the cellular stress response. Our expression studies showed abnormally enhanced activation of the cellular stress response, monitored by PKR-mediated phosphorylation of eIF2α, in fibroblasts from patients with EIF2AK2 variants. Intriguingly, PKR can also be regulated by PRKRA (protein interferon-inducible double-stranded RNA-dependent protein kinase activator A), the product of another gene causing monogenic dystonia. INTERPRETATION: We identified EIF2AK2 variants implicated in early onset generalized dystonia, which can be dominantly or recessively inherited, or occur de novo. Our findings provide direct evidence for a key role of a dysfunctional eIF2α pathway in the pathogenesis of dystonia. ANN NEUROL 2021;89:485-497.


Assuntos
Distúrbios Distônicos/genética , Fibroblastos/metabolismo , eIF-2 Quinase/genética , Adolescente , Adulto , Idade de Início , Povo Asiático , Encéfalo/diagnóstico por imagem , Criança , Pré-Escolar , Distúrbios Distônicos/metabolismo , Distúrbios Distônicos/fisiopatologia , Feminino , Estudo de Associação Genômica Ampla , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Linhagem , População Branca , Sequenciamento do Exoma , Adulto Jovem , eIF-2 Quinase/metabolismo
6.
Neurobiol Aging ; 94: 311.e5-311.e10, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32527607

RESUMO

The aim of this study was to explore whether variants in LRP10, recently associated with Parkinson's disease and dementia with Lewy bodies, are observed in 2 large cohorts (discovery and validation cohort) of patients with progressive supranuclear palsy (PSP). A total of 950 patients with PSP were enrolled: 246 patients with PSP (n = 85 possible (35%), n = 128 probable (52%), n = 33 definite (13%)) in the discovery cohort and 704 patients with definite PSP in the validation cohort. Sanger sequencing of all LRP10 exons and exon-intron boundaries was performed in the discovery cohort, and whole-exome sequencing was performed in the validation cohort. Two patients from the discovery cohort and 8 patients from the validation cohort carried a rare, heterozygous, and possibly pathogenic LRP10 variant (p.Gly326Asp, p.Asp389Asn, and p.Arg158His, p.Cys220Tyr, p.Thr278Ala, p.Gly306Asp, p.Glu486Asp, p.Arg554∗, p.Arg661Cys). In conclusion, possibly pathogenic LRP10 variants occur in a small fraction of patients with PSP and may be overrepresented in these patients compared with controls. This suggests that possibly pathogenic LRP10 variants may play a role in the development of PSP.


Assuntos
Variação Genética/genética , Proteínas Relacionadas a Receptor de LDL/genética , Paralisia Supranuclear Progressiva/genética , Idoso , Estudos de Coortes , Éxons , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sequenciamento do Exoma
7.
J Alzheimers Dis ; 76(3): 1161-1170, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32597809

RESUMO

BACKGROUND: Rare variants in the low-density lipoprotein receptor related protein 10 gene (LRP10) have recently been implicated in the etiology of Parkinson's disease (PD) and dementia with Lewy bodies (DLB). OBJECTIVE: We searched for LRP10 variants in a new series of brain donors with dementia and Lewy pathology (LP) at autopsy, or dementia and parkinsonism without LP but with various other neurodegenerative pathologies. METHODS: Sanger sequencing of LRP10 was performed in 233 donors collected by the Netherlands Brain Bank. RESULTS: Rare, possibly pathogenic heterozygous LRP10 variants were present in three patients: p.Gly453Ser in a patient with mixed Alzheimer's disease (AD)/Lewy body disease (LBD), p.Arg151Cys in a DLB patient, and p.Gly326Asp in an AD patient without LP. All three patients had a positive family history for dementia or PD. CONCLUSION: Rare LRP10 variants are present in some patients with dementia and different brain pathologies including DLB, mixed AD/LBD, and AD. These findings suggest a role for LRP10 across a broad neurodegenerative spectrum.


Assuntos
Proteínas Relacionadas a Receptor de LDL/genética , Doença por Corpos de Lewy/genética , Doença de Parkinson/patologia , Fenótipo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Feminino , Heterozigoto , Humanos , Doença por Corpos de Lewy/patologia , Masculino , Doença de Parkinson/genética
9.
Parkinsonism Relat Disord ; 66: 228-231, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31431325

RESUMO

OBJECTIVE: Recessive mutations in the Gap Junction Protein Gamma 2 (GJC2) gene cause Pelizaeus-Merzbacher-like disease type 1, a severe infantile-onset hypomyelinating leukodystrophy. Milder, late-onset phenotypes including complicated spastic paraplegia in one family (SPG44), and mild tremor in one case, were reported associated to GJC2 homozygous missense mutations. Here, we report a new family with two siblings carrying a different homozygous GJC2 mutation, presenting with late-onset ataxic and pyramidal disturbances, and parkinsonism in one of them. METHODS: Two affected siblings were studied by neurological examination and brain MRI. Genetic analyses included genome-wide homozygosity mapping in both siblings, and whole exome sequencing in one sib. The resulting candidate gene variant was validated by Sanger sequencing. RESULTS: The affected siblings share a novel homozygous GJC2 missense mutation (c.820G>C, p.Val274Leu), predicted as pathogenic by all used in-silico tools. Brain MRI showed hyperintense signal in T2-weighted images in the internal capsule and subcortical and periventricular white matter, consistent with hypomyelination. CONCLUSIONS: Our findings confirm and further expand the late-onset phenotypes of GJC2 mutations, to include prominent ataxia, pyramidal disturbances and mild parkinsonism, and confirm the distinctive associated MRI pattern.


Assuntos
Ataxia/genética , Conexinas/genética , Transtornos Parkinsonianos/genética , Substância Branca/patologia , Idade de Início , Idoso , Ataxia/patologia , Ataxia/fisiopatologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Transtornos Parkinsonianos/patologia , Transtornos Parkinsonianos/fisiopatologia , Linhagem , Fenótipo , Irmãos , Turquia , Substância Branca/diagnóstico por imagem
11.
Mov Disord ; 33(11): 1814-1819, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30398675

RESUMO

BACKGROUND: The genetic bases of PD in sub-Saharan African (SSA) populations remain poorly characterized, and analysis of SSA families with PD might lead to the discovery of novel disease-related genes. OBJECTIVES: To investigate the clinical features and identify the disease-causing gene in a black South African family with 3 members affected by juvenile-onset parkinsonism and intellectual disability. METHODS: Clinical evaluation, neuroimaging studies, whole-exome sequencing, homozygosity mapping, two-point linkage analysis, and Sanger sequencing of candidate variants. RESULT: A homozygous 28-nucleotide frameshift deletion in the PTRHD1 coding region was identified in the 3 affected family members and linked to the disease with genome-wide significant evidence. PTRHD1 was recently nominated as the disease-causing gene in two Iranian families, each containing 2 siblings with similar phenotypes and homozygous missense mutations. CONCLUSION: Together with the previous reports, we provide conclusive evidence that loss-of-function mutations in PTRHD1 cause autosomal-recessive juvenile parkinsonism and intellectual disability. © 2018 International Parkinson and Movement Disorder Society.


Assuntos
Saúde da Família , Deficiência Intelectual/genética , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Mutação/genética , Transtornos Parkinsonianos/genética , Adulto , África Subsaariana , Análise Mutacional de DNA , Feminino , Humanos , Deficiência Intelectual/complicações , Masculino , Transtornos Parkinsonianos/complicações
12.
Lancet Neurol ; 17(7): 597-608, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29887161

RESUMO

BACKGROUND: Most patients with Parkinson's disease, Parkinson's disease dementia, and dementia with Lewy bodies do not carry mutations in known disease-causing genes. The aim of this study was to identify a novel gene implicated in the development of these disorders. METHODS: Our study was done in three stages. First, we did genome-wide linkage analysis of an Italian family with dominantly inherited Parkinson's disease to identify the disease locus. Second, we sequenced the candidate gene in an international multicentre series of unrelated probands who were diagnosed either clinically or pathologically with Parkinson's disease, Parkinson's disease dementia, or dementia with Lewy bodies. As a control, we used gene sequencing data from individuals with abdominal aortic aneurysms (who were not examined neurologically). Third, we enrolled an independent series of patients diagnosed clinically with Parkinson's disease and controls with no signs or family history of Parkinson's disease, Parkinson's disease dementia, or dementia with Lewy bodies from centres in Portugal, Sardinia, and Taiwan, and screened them for specific variants. We also did mRNA and brain pathology studies in three patients from the international multicentre series carrying disease-associated variants, and we did functional protein studies in in-vitro models, including neurons from induced pluripotent stem-like cells. FINDINGS: Molecular studies were done between Jan 1, 2008, and Dec 31, 2017. In the initial kindred of ten affected Italian individuals (mean age of disease onset 59·8 years [SD 8·7]), we detected significant linkage of Parkinson's disease to chromosome 14 and nominated LRP10 as the disease-causing gene. Among the international series of 660 probands, we identified eight individuals (four with Parkinson's disease, two with Parkinson's disease dementia, and two with dementia with Lewy bodies) who carried different, rare, potentially pathogenic LRP10 variants; one carrier was found among 645 controls with abdominal aortic aneurysms. In the independent series, two of these eight variants were detected in three additional Parkinson's disease probands (two from Sardinia and one from Taiwan) but in none of the controls. Of the 11 probands from the international and independent cohorts with LRP10 variants, ten had a positive family history of disease and DNA was available from ten affected relatives (in seven of these families). The LRP10 variants were present in nine of these ten relatives, providing independent-albeit limited-evidence of co-segregation with disease. Post-mortem studies in three patients carrying distinct LRP10 variants showed severe Lewy body pathology. Of nine variants identified in total (one in the initial family and eight in stage 2), three severely affected LRP10 expression and mRNA stability (1424+5delG, 1424+5G→A, and Ala212Serfs*17, shown by cDNA analysis), four affected protein stability (Tyr307Asn, Gly603Arg, Arg235Cys, and Pro699Ser, shown by cycloheximide-chase experiments), and two affected protein localisation (Asn517del and Arg533Leu; shown by immunocytochemistry), pointing to loss of LRP10 function as a common pathogenic mechanism. INTERPRETATION: Our findings implicate LRP10 gene defects in the development of inherited forms of α-synucleinopathies. Future elucidation of the function of the LRP10 protein and pathways could offer novel insights into mechanisms, biomarkers, and therapeutic targets. FUNDING: Stichting ParkinsonFonds, Dorpmans-Wigmans Stichting, Erasmus Medical Center, ZonMw-Memorabel programme, EU Joint Programme Neurodegenerative Disease Research (JPND), Parkinson's UK, Avtal om Läkarutbildning och Forskning (ALF) and Parkinsonfonden (Sweden), Lijf and Leven foundation, and cross-border grant of Alzheimer Netherlands-Ligue Européene Contre la Maladie d'Alzheimer (LECMA).


Assuntos
Proteínas Relacionadas a Receptor de LDL/genética , Doença por Corpos de Lewy/genética , Doença de Parkinson/genética , Encéfalo/patologia , Cromossomos Humanos Par 14/genética , Demência/epidemiologia , Demência/etiologia , Demência/genética , Família , Feminino , Ligação Genética , Estudo de Associação Genômica Ampla , Heterozigoto , Humanos , Itália , Doença por Corpos de Lewy/epidemiologia , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/complicações , Doença de Parkinson/epidemiologia , Linhagem , Células-Tronco Pluripotentes/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética
13.
Parkinsonism Relat Disord ; 39: 64-70, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28347615

RESUMO

INTRODUCTION: Mutations in the C19orf12 gene cause mitochondrial membrane protein associated neurodegeneration (MPAN), an autosomal recessive form of neurodegeneration with brain iron accumulation (NBIA). A limited number of patients with C19orf12 mutations, particularly those with adult onset of symptoms, have been reported. METHODS: We sequenced the entire coding region of C19orf12 in 15 Turkish adult probands with idiopathic NBIA. We also performed haplotype analysis in families with a recurrent C19orf12 mutation. Clinical features were collected using a standardized form. RESULTS: Nine of our 15 probands (60%) carried the homozygous c.32C > T mutation in C19orf12 (predicted protein effect: p.Thr11Met). This homozygous mutation co-segregated with the disease in all affected relatives available for testing (16 homozygous subjects). Haplotypes across the C19orf12 locus were identical for a very small region, closest to the mutation, suggesting an old founder, or, two independent founders. The clinical phenotype was characterized by adult onset in most cases (mean 24.5 years, range 10-36), and broad spectrum, including prominent parkinsonism, pyramidal signs, psychiatric disturbances, cognitive decline, and motor axonal neuropathy, in various combinations. On T2- or susceptibility weighted-MRI images, all patients displayed bilateral hypointensities in globus pallidus and substantia nigra, without an eye-of-the-tiger sign; however, hyperintense streaking of the medial medullary lamina between the external and internal parts of globus pallidus was observed frequently. CONCLUSION: The C19orf12 p.Thr11Met mutation is frequent among adult Turkish patients with MPAN. These findings contribute to the characterization of this important NBIA form, and have direct implications for genetic testing of patients of Turkish origin.


Assuntos
Predisposição Genética para Doença/genética , Proteínas Mitocondriais/genética , Mutação/genética , Doenças Neurodegenerativas/genética , Adolescente , Adulto , Criança , Análise Mutacional de DNA , Saúde da Família , Feminino , Haplótipos , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Metionina/genética , Doenças Neurodegenerativas/complicações , Doenças Neurodegenerativas/diagnóstico por imagem , Treonina/genética , Turquia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...