Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 7156, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37130890

RESUMO

Soil microbiomes in forest ecosystems act as both nutrient sources and sinks through a range of processes including organic matter decomposition, nutrient cycling, and humic compound incorporation into the soil. Most forest soil microbial diversity studies have been performed in the northern hemisphere, and very little has been done in forests within African continent. This study examined the composition, diversity and distribution of prokaryotes in Kenyan forests top soils using amplicon sequencing of V4-V5 hypervariable region of the 16S rRNA gene. Additionally, soil physicochemical characteristics were measured to identify abiotic drivers of prokaryotic distribution. Different forest soils were found to have statistically distinct microbiome compositions, with Proteobacteria and Crenarchaeota taxa being the most differentially abundant across regions within bacterial and archaeal phyla, respectively. Key bacterial community drivers included pH, Ca, K, Fe, and total N while archaeal diversity was shaped by Na, pH, Ca, total P and total N. To contextualize the prokaryote diversity of Kenyan forest soils on a global scale, the sample set was compared to amplicon data obtained from forest biomes across the globe; displaying them to harbor distinct microbiomes with an over-representation of uncultured taxa such as TK-10 and Ellin6067 genera.


Assuntos
Microbiota , Solo , Quênia , Solo/química , RNA Ribossômico 16S/genética , Florestas , Bactérias/genética , Archaea/genética , Microbiota/genética , Microbiologia do Solo
2.
Curr Res Microb Sci ; 2: 100066, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34841356

RESUMO

Total community 16S rDNA was used to determine the diversity and composition of bacteria and archaea within lakes Olbolosat and Oloiden in Kenya. The V3-V4 hypervariable region of the 16S rRNA gene was targeted since it's highly conserved and has a higher resolution for lower rank taxa. High throughput sequencing was performed on 15 samples obtained from the two lakes using the Illumina Miseq platform. Lakes Olbolosat and Oloiden shared 280 of 10,523 Amplicon Sequence Variants (ASVs) recovered while the four sample types (water, microbial mats, dry and wet sediments) shared 4 ASVs. The composition of ASVs in lake Olbolosat was highly dependent on Cu+, Fe2+, NH4 +, and Mn2+, while L. Oloiden was dependent on Mg2+, Na+, Ca2+, and K+. All the alpha diversity indices except Simpson were highest in the dry sediment sample (EC1 and 2) both from lake Oloiden. The abundant phyla included Proteobacteria (33.8%), Firmicutes (27.3%), Actinobacteriota (21.2%), Chloroflexi (6.8%), Cyanobacteria (3.8%), Acidobacteriota (2.8%), Planctomycetota (1.9%) and Bacteroidota (1.1%). Analysis of similarity (ANOSIM) revealed a significant difference in ASV composition between the two lakes (r = 0.191, p = 0.048), and between the sample types (r = 0.6667, p = 0.001). The interaction network for prokaryotic communities within the two lakes displayed Proteobacteria to be highly positively connected with other microbes. PERMANOVA results suggest that temperature controls the functioning of the two ecosystems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...