Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 60(5): 1456-1462, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33690591

RESUMO

In this work, the technique of hot embossing has been applied for the bonding of alumina-phosphate (PAL) glass with cobalt-doped magnesium aluminate (MALO) crystals. The application of the hot embossing technique for bonding of PAL/MALO is a competitive method, as compared to the existing thermobonding techniques. The obtained PAL/MALO interfaces show high quality, similar to what is currently achievable with other, more expensive traditional methods. The interfaces of the bonded samples have been successfully tested for strength and damage thresholds. The damage threshold is estimated to be around 4.5-7.9kW/cm2. Therefore, microlasers can be developed based on the obtained components.

2.
Appl Opt ; 55(18): 4939-45, 2016 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-27409122

RESUMO

We present a novel method for the development of diffractive optical elements (DOEs). Unlike standard surface relief DOEs, the phase shift is introduced through a refractive index variation achieved by using different types of glass. For the fabrication of DOEs we use a modified stack-and-draw technique, originally developed for the fabrication of photonic crystal fibers, resulting in a completely flat element that is easy to integrate with other optical components. A proof-of-concept demonstration of the method is presented-a two-dimensional binary optical phase grating in the form of a square chessboard with a pixel size of 5 µm. Two types of glass are used: low refractive index silicate glass NC21 and high refractive index lead-silicate glass F2. The measured diffraction characteristics of the fabricated component are presented and it is shown numerically and experimentally that such a DOE can be used as a fiber interconnector that couples light from a small-core fiber into the several cores of a multicore fiber.

3.
Materials (Basel) ; 7(6): 4723-4738, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-28788702

RESUMO

In the paper, we report on the development of a synthesis and melting method of phosphate glasses designed for active microstructured fiber manufacturing. Non-doped glass synthesized in a P2O5-Al2O3-BaO-ZnO-MgO-Na2O oxide system served as the matrix material; meanwhile, the glass was doped with 6 mol% (18 wt%) of Yb2O3, as fiber core. The glasses were well-fitted in relation to optical (refractive index) and thermal proprieties (thermal expansion coefficient, rheology). The fiber with the Yb3+-doped core, with a wide internal photonic microstructure for a laser pump, as well as with a high relative hole size in the photonic outer air-cladding, was produced. The laser built on the basis of this fiber enabled achieving 8.07 W of output power with 20.5% slope efficiency against the launched pump power, in single-mode operation M² = 1.59, from a 53 cm-long cavity.

4.
Opt Express ; 21(21): 25403-17, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24150382

RESUMO

Straightforward numerical integration of the Rayleigh-Sommerfeld diffraction integral (R-SDI) remains computationally challenging, even with today's computational resources. As such, approximating the R-SDI to decrease the computation time while maintaining a good accuracy is still a topic of interest. In this paper, we apply an approximation for the R-SDI that is to be used to propagate the field exiting a Coherent Fiber Bundle (CFB) with ultra-high numerical aperture (0.928) of which we presented the design and modal properties in previous work. Since our CFB has single-mode cores with a diameter (550 nm) smaller than the wavelength (850 nm) for which the CFB was designed, we approximate the highly divergent fundamental modes of the cores with real Dirac delta functions. We find that with this approximation we can strongly reduce the computation time of the R-SDI while maintaining a good agreement with the results of the full R-SDI. Using this approximation, we first determine the Point Spread Function (PSF) for an 'ideal' output field exiting the CFB (identical amplitudes for cores on a perfect hexagonal lattice with the phase of each core determined by the appropriate spherical and tilted plane wave front). Next, we analyze the PSF when amplitude or phase noise is superposed onto this 'ideal' field. We find that even in the presence of these types of noise, the effect on the central peak of PSF is limited. From these types of noise, phase noise is found to have the biggest impact on the PSF.

5.
Opt Express ; 21(19): 21991-2011, 2013 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-24104092

RESUMO

Advances in fiber optics and CCD technology in the last decades have allowed for a large reduction in outer diameter (from centimeters to submillimeter) of endoscopes. Attempts to reduce the outer diameter even further, however, have been hindered by the trade-off, inherent to conventional endoscopes, between outer diameter, resolution and field of view. Several groups have shown the feasibility of further miniaturization towards so called micro-endoscopes, albeit at the cost of a very reduced field of view. In previous work we presented the design of an ultra-high NA (0.928) Coherent FiberBundle (CFB) that, in combination with proximal wave front shaping, could be used to circumvent this trade-off thus paving the way for even smaller endoscopes. In this paper we analyze how the modal properties of such an ultra-high NA CFB determine the required input field to achieve any desired output field. We use the periodicity of the hexagonal lattice which characterizes a CFB, to define a unit cell of which we analyze the eigen-modes. During the modal analysis, we also take into account realistic variations in lattice constant, core size and core shape due to the limitations of the fabrication technology. Realistic values for these types of fabrication-induced irregularities were obtained via SEM images of a CFB fabricated according to the aforementioned design. The presence of these irregularities results, for a desired output, in the required input to be different from the required input for a defect-free CFB. We find that of the different types of fabrication-induced irregularities present in the CFB, variations in core ellipticity have the biggest impact on the required input for a given desired output.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...