Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Microorganisms ; 12(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38674639

RESUMO

Bacteriophages (phages) are potential alternatives to chemical antimicrobials against pathogens of public health significance. Understanding the diversity and host specificity of phages is important for developing effective phage biocontrol approaches. Here, we assessed the host range, morphology, and genetic diversity of eight Salmonella enterica phages isolated from a wastewater treatment plant. The host range analysis revealed that six out of eight phages lysed more than 81% of the 43 Salmonella enterica isolates tested. The genomic sequences of all phages were determined. Whole-genome sequencing (WGS) data revealed that phage genome sizes ranged from 41 to 114 kb, with GC contents between 39.9 and 50.0%. Two of the phages SB13 and SB28 represent new species, Epseptimavirus SB13 and genera Macdonaldcampvirus, respectively, as designated by the International Committee for the Taxonomy of Viruses (ICTV) using genome-based taxonomic classification. One phage (SB18) belonged to the Myoviridae morphotype while the remaining phages belonged to the Siphoviridae morphotype. The gene content analyses showed that none of the phages possessed virulence, toxin, antibiotic resistance, type I-VI toxin-antitoxin modules, or lysogeny genes. Three (SB3, SB15, and SB18) out of the eight phages possessed tailspike proteins. Whole-genome-based phylogeny of the eight phages with their 113 homologs revealed three clusters A, B, and C and seven subclusters (A1, A2, A3, B1, B2, C1, and C2). While cluster C1 phages were predominantly isolated from animal sources, cluster B contained phages from both wastewater and animal sources. The broad host range of these phages highlights their potential use for controlling the presence of S. enterica in foods.

2.
Microbiol Resour Announc ; 13(3): e0114923, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38299819

RESUMO

Here, we present the complete 4.77 Mb genome of Enterobacter roggenkampii 0-E assembled with Oxford Nanopore long reads. This genome harbors 19 antimicrobial resistance genes, including ramA and marA decreasing permeability to carbapenems. This genome adds novel knowledge on emerging multidrug resistance in the Enterobacter cloacae species complex.

3.
J Med Chem ; 67(2): 1008-1023, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38170170

RESUMO

Pseudomonas aeruginosa is one of the top priority pathogens that requires immediate attention according to the World Health Organisation (WHO). Due to the alarming shortage of novel antimicrobials, targeting quorum sensing (QS), a bacterial cell to cell signaling system controlling virulence, has emerged as a promising approach as an antibiotic adjuvant therapy. Interference with the pqs system, one of three QS systems in P. aeruginosa, results in reduction of bacterial virulence gene expression and biofilm maturation. Herein, we report a hit to lead process to fine-tune the potency of our previously reported inhibitor 1 (IC50 3.2 µM in P. aeruginosa PAO1-L), which led to the discovery of 2-(4-(3-((6-chloro-1-isopropyl-1H-benzo[d]imidazol-2-yl)amino)-2-hydroxypropoxy)phenyl)acetonitrile (6f) as a potent PqsR antagonist. Compound 6f inhibited the PqsR-controlled PpqsA-lux transcriptional reporter fusion in P. aeruginosa at low submicromolar concentrations. Moreover, 6f showed improved efficacy against P. aeruginosa CF isolates with significant inhibition of pyocyanin, 2-alkyl-4(1H)-quinolones production.


Assuntos
Infecções por Pseudomonas , Quinolonas , Humanos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Percepção de Quorum , Biofilmes , Quinolonas/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/metabolismo , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Imidazóis/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias , Fatores de Virulência
4.
Front Microbiol ; 14: 1267652, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029199

RESUMO

With the increasing occurrence and severity of cyanobacterial harmful algal blooms (cHAB) at the global scale, there is an urgent need for rapid, accurate, accessible, and cost-effective detection tools. Here, we detail the RosHAB workflow, an innovative, in-the-field applicable genomics approach for real-time, early detection of cHAB outbreaks. We present how the proposed workflow offers consistent taxonomic identification of water samples in comparison to traditional microscopic analyses in a few hours and discuss how the generated data can be used to deepen our understanding on cyanobacteria ecology and forecast HABs events. In parallel, processed water samples will be used to iteratively build the International cyanobacterial toxin database (ICYATOX; http://icyatox.ibis.ulaval.ca) containing the analysis of novel cyanobacterial genomes, including phenomics and genomics metadata. Ultimately, RosHAB will (1) improve the accuracy of on-site rapid diagnostics, (2) standardize genomic procedures in the field, (3) facilitate these genomics procedures for non-scientific personnel, and (4) identify prognostic markers for evidence-based decisions in HABs surveillance.

5.
Microbiol Resour Announc ; 12(12): e0058923, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37966232

RESUMO

We report the draft genomes of seven bacterial strains (six Pseudomonas spp. and one Rheinheimera sp.) isolated from environmental water samples from oil sands tailings ponds that have accumulated a wide variety of organic compounds, salts and metals.

6.
Microbiol Resour Announc ; 12(11): e0065123, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37874142

RESUMO

We report the draft genome sequence of Pseudomonas sp. ER28, capable of utilizing the model naphthenic acid, cyclohexane pentanoic acid, as its sole carbon source. It was recovered from oil sands process-affected water containing cyclic and acyclic naphthenic acids. The genome size is 5.7 Mbp, and the G + C content is 60%.

7.
PLoS One ; 18(9): e0291109, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37676871

RESUMO

A comparative genomic analysis was conducted for 171 Salmonella isolates recovered from raw inshell almonds and raw almond kernels between 2001 and 2013 and for 30 Salmonella Enteritidis phage type (PT) 30 isolates recovered between 2001 and 2006 from a 2001 salmonellosis outbreak-associated almond orchard. Whole genome sequencing was used to measure the genetic distance among isolates by single nucleotide polymorphism (SNP) analyses and to predict the presence of plasmid DNA and of antimicrobial resistance (AMR) and virulence genes. Isolates were classified by serovars with Parsnp, a fast core-genome multi aligner, before being analyzed with the CFSAN SNP Pipeline (U.S. Food and Drug Administration Center for Food Safety and Applied Nutrition). Genetically similar (≤18 SNPs) Salmonella isolates were identified among several serovars isolated years apart. Almond isolates of Salmonella Montevideo (2001 to 2013) and Salmonella Newport (2003 to 2010) differed by ≤9 SNPs. Salmonella Enteritidis PT 30 isolated between 2001 and 2013 from survey, orchard, outbreak, and clinical samples differed by ≤18 SNPs. One to seven plasmids were found in 106 (62%) of the Salmonella isolates. Of the 27 plasmid families that were identified, IncFII and IncFIB plasmids were the most predominant. AMR genes were identified in 16 (9%) of the survey isolates and were plasmid encoded in 11 of 16 cases; 12 isolates (7%) had putative resistance to at least one antibiotic in three or more drug classes. A total of 303 virulence genes were detected among the assembled genomes; a plasmid that harbored a combination of pef, rck, and spv virulence genes was identified in 23% of the isolates. These data provide evidence of long-term survival (years) of Salmonella in agricultural environments.


Assuntos
Prunus dulcis , Salmonella enterica , Estados Unidos , Humanos , Salmonella enterica/genética , Prunus dulcis/genética , Salmonella enteritidis/genética , California/epidemiologia , Polimorfismo de Nucleotídeo Único
8.
Microbiol Resour Announc ; 12(10): e0018823, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37655927

RESUMO

Azoles are major antifungals in agriculture and medicine. However, the surge of intrinsic azole resistance is critical for public health. Here, we present the complete long-read sequencing of three azole-resistant Penicillium rubens from food crops. The presence of CYP51A and ERG11 paralogues was confirmed, as in other azole-resistant P. rubens.

9.
Microbiol Resour Announc ; 11(6): e0009122, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35583330

RESUMO

Clostridium botulinum is responsible for botulism, a potentially lethal foodborne intoxication. Here, we report the draft genome sequences of C. botulinum group II strains 202F (serotype F) and Hazen (serotype E). The genomes share many similarities, including multiple mobile genetic elements.

10.
Food Microbiol ; 101: 103877, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34579845

RESUMO

Salmonella enterica subsp. enterica is one of the leading causes of human foodborne infections and several outbreaks are now associated with the consumption of fresh fruit and vegetables. This study aims at evaluating whether Salmonella virulence can be linked to an enhanced ability to survive successive digestive environments. Thirteen S. enterica strains were selected according to high and low virulence phenotypes. Lettuce inoculated separately with each S. enterica strain was used as food matrix in the TNO gastrointestinal model (TIM-1) of the human upper gastrointestinal tract. During the passage in the stomach, counts determined using PMA-qPCR were 2-5 logs higher than the cultivable counts for all strains indicating the presence of viable but non-cultivable cells. Bacterial growth was observed in the duodenum compartment after 180 min for all but one strain and growth continued into the ileal compartment. After passage through the simulated gastrointestinal tract, both virulent and avirulent S. enterica strains survived but high virulence strains had a significantly (p = 0.004) better average survival rate (1003 %-3753 %) than low virulence strains (from 25 % to 3730%). The survival rates of S. enterica strains could be linked to the presence of genes associated with acid and bile resistance and their predicted products. The presence of single nucleotide polymorphisms may also impact the function of virulence associated genes and play a role in the resulting phenotype. These data provide an understanding of the relationship between measured virulence potential and survival of S. enterica during dynamic simulated gastrointestinal transit.


Assuntos
Trato Gastrointestinal/microbiologia , Salmonella/patogenicidade , Virulência , Humanos , Modelos Biológicos
11.
ACS Infect Dis ; 7(9): 2666-2685, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34503335

RESUMO

P. aeruginosa (PA) continues to pose a threat to global public health due to its high levels of antimicrobial resistance (AMR). The ongoing AMR crisis has led to an alarming shortage of effective treatments for resistant microbes, and hence there is a pressing demand for the development of novel antimicrobial interventions. The potential use of antivirulence therapeutics to tackle bacterial infections has attracted considerable attention over the past decades as they hamper the pathogenicity of target microbes with reduced selective pressure, minimizing the emergence of resistance. One such approach is to interfere with the PA pqs quorum sensing system which upon the interaction of PqsR, a Lys-R type transcriptional regulator, with its cognate signal molecules 4-hydroxy-2-heptylquinoline (HHQ) and 2-heptyl-3-hydroxy-4-quinolone (PQS), governs multiple virulence traits and host-microbe interactions. In this study, we report the hit identification and optimization of PqsR antagonists using virtual screening coupled with whole cell assay validation. The optimized hit compound 61 ((R)-2-(4-(3-(6-chloro-4-oxoquinazolin-3(4H)-yl)-2-hydroxypropoxy)phenyl)acetonitrile) was found to inhibit the expression of the PA PpqsA promoter controlled by PqsR with an IC50 of 1 µM. Using isothermal titration calorimetry, a Kd of 10 nM for the PqsR ligand binding domain (PqsRLBD) was determined for 61. Furthermore, the crystal structure of 61 with PqsRLBD was attained with a resolution of 2.65 Å. Compound 61 significantly reduced levels of pyocyanin, PQS, and HHQ in PAO1-L, PA14 lab strains and PAK6085 clinical isolate. Furthermore, this compound potentiated the effect of ciprofloxacin in early stages of biofilm treatment and in Galleria mellonella infected with PA. Altogether, this data shows 61 as a potent PqsR inhibitor with potential for hit to lead optimization toward the identification of a PA QS inhibitor which can be advanced into preclinical development.


Assuntos
Pseudomonas aeruginosa , Percepção de Quorum , Proteínas de Bactérias/metabolismo , Biofilmes , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/metabolismo
12.
Microbiol Resour Announc ; 10(9)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664136

RESUMO

We report the complete genome sequence of strain OST1909, belonging to a Pseudomonas species. The genome size is 6,306,352 bp, with a G+C content of 59.6%. The isolate was recovered from oil sands process-affected water (OSPW), despite the numerous toxic compounds that accumulate in oil sands tailings ponds.

13.
Microb Genom ; 7(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33720817

RESUMO

The Liverpool epidemic strain (LES) is an important transmissible clonal lineage of Pseudomonas aeruginosa that chronically infects the lungs of people with cystic fibrosis (CF). Previous studies have focused on the genomics of the LES in a limited number of isolates, mostly from one CF centre in the UK, and from studies highlighting identification of the LES in Canada. Here we significantly extend the current LES genome database by genome sequencing 91 isolates from multiple CF centres across the UK, and we describe the comparative genomics of this large collection of LES isolates from the UK and Canada. Phylogenetic analysis revealed that the 145 LES genomes analysed formed a distinct clonal lineage when compared with the wider P. aeruginosa population. Notably, the isolates formed two clades: one associated with isolates from Canada, and the other associated with UK isolates. Further analysis of the UK LES isolates revealed clustering by clinic geography. Where isolates clustered closely together, the association was often supported by clinical data linking isolates or patients. When compared with the earliest known isolate, LESB58 (from 1988), many UK LES isolates shared common loss-of-function mutations, such as in genes gltR and fleR. Other loss-of-function mutations identified in previous studies as common adaptations during CF chronic lung infections were also identified in multiple LES isolates. Analysis of the LES accessory genome (including genomic islands and prophages) revealed variations in the carriage of large genomic regions, with some evidence for shared genomic island/prophage complement according to clinic location. Our study reveals divergence and adaptation during the spread of the LES, within the UK and between continents.


Assuntos
Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/transmissão , Pseudomonas aeruginosa/isolamento & purificação , Adaptação Fisiológica , Canadá , Fibrose Cística/complicações , Epidemias , Genoma Bacteriano , Humanos , Pulmão/microbiologia , Infecções Oportunistas/microbiologia , Infecções Oportunistas/transmissão , Filogenia , Infecções por Pseudomonas/etiologia , Pseudomonas aeruginosa/classificação , Pseudomonas aeruginosa/fisiologia , Reino Unido/epidemiologia
14.
Microorganisms ; 8(7)2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650601

RESUMO

The emergence of multidrug-resistant bacterial strains worldwide has become a serious problem for public health over recent decades. The increase in antimicrobial resistance has been expanding via plasmids as mobile genetic elements encoding antimicrobial resistance (AMR) genes that are transferred vertically and horizontally. This study focuses on Salmonella enterica, one of the leading foodborne pathogens in industrialized countries. S. enterica is known to carry several plasmids involved not only in virulence but also in AMR. In the current paper, we present an integrated strategy to detect plasmid scaffolds in whole genome sequencing (WGS) assemblies. We developed a two-step procedure to predict plasmids based on i) the presence of essential elements for plasmid replication and mobility, as well as ii) sequence similarity to a reference plasmid. Next, to confirm the accuracy of the prediction in 1750 S. enterica short-read sequencing data, we combined Oxford Nanopore MinION long-read sequencing with Illumina MiSeq short-read sequencing in hybrid assemblies for 84 isolates to evaluate the proportion of plasmid that has been detected. At least one scaffold with an origin of replication (ORI) was predicted in 61.3% of the Salmonella isolates tested. The results indicated that IncFII and IncI1 ORIs were distributed in many S. enterica serotypes and were the most prevalent AMR genes carrier, whereas IncHI2A/IncHI2 and IncA/C2 were more serotype restricted but bore several AMR genes. Comparison between hybrid and short-read assemblies revealed that 81.1% of plasmids were found in the short-read sequencing using our pipeline. Through this process, we established that plasmids are prevalent in S. enterica and we also substantially expand the AMR genes in the resistome of this species.

15.
mSphere ; 5(3)2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32522778

RESUMO

Salmonella comprises more than 2,600 serovars. Very few environmental and uncommon serovars have been characterized for their potential role in virulence and human infections. A complementary in vitro and in vivo systematic high-throughput analysis of virulence was used to elucidate the association between genetic and phenotypic variations across Salmonella isolates. The goal was to develop a strategy for the classification of isolates as a benchmark and predict virulence levels of isolates. Thirty-five phylogenetically distant strains of unknown virulence were selected from the Salmonella Foodborne Syst-OMICS (SalFoS) collection, representing 34 different serovars isolated from various sources. Isolates were evaluated for virulence in 4 complementary models of infection to compare virulence traits with the genomics data, including interactions with human intestinal epithelial cells, human macrophages, and amoeba. In vivo testing was conducted using the mouse model of Salmonella systemic infection. Significant correlations were identified between the different models. We identified a collection of novel hypothetical and conserved proteins associated with isolates that generate a high burden. We also showed that blind prediction of virulence of 33 additional strains based on the pan-genome was high in the mouse model of systemic infection (82% agreement) and in the human epithelial cell model (74% agreement). These complementary approaches enabled us to define virulence potential in different isolates and present a novel strategy for risk assessment of specific strains and for better monitoring and source tracking during outbreaks.IMPORTANCESalmonella species are bacteria that are a major source of foodborne disease through contamination of a diversity of foods, including meat, eggs, fruits, nuts, and vegetables. More than 2,600 different Salmonella enterica serovars have been identified, and only a few of them are associated with illness in humans. Despite the fact that they are genetically closely related, there is enormous variation in the virulence of different isolates of Salmonella enterica Identification of foodborne pathogens is a lengthy process based on microbiological, biochemical, and immunological methods. Here, we worked toward new ways of integrating whole-genome sequencing (WGS) approaches into food safety practices. We used WGS to build associations between virulence and genetic diversity within 83 Salmonella isolates representing 77 different Salmonella serovars. Our work demonstrates the potential of combining a genomics approach and virulence tests to improve the diagnostics and assess risk of human illness associated with specific Salmonella isolates.


Assuntos
Células Epiteliais/microbiologia , Genoma Bacteriano , Salmonelose Animal/microbiologia , Salmonella/genética , Virulência , Acanthamoeba/microbiologia , Animais , Modelos Animais de Doenças , Feminino , Genômica , Humanos , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Filogenia , Salmonella/classificação , Salmonella/patogenicidade , Salmonelose Animal/sangue , Sorogrupo , Células THP-1 , Sequenciamento Completo do Genoma
16.
Front Chem ; 8: 204, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32432073

RESUMO

Current treatments for Pseudomonas aeruginosa infections are becoming less effective because of the increasing rates of multi-antibiotic resistance. Pharmacological targeting of virulence through inhibition of quorum sensing (QS) dependent virulence gene regulation has considerable therapeutic potential. In P. aeruginosa, the pqs QS system regulates the production of multiple virulence factors as well as biofilm maturation and is a promising approach for developing antimicrobial adjuvants for combatting drug resistance. In this work, we report the hit optimisation for a series of potent novel inhibitors of PqsR, a key regulator of the pqs system, bearing a 2-((5-methyl-5H-[1,2,4]triazino[5,6-b]indol-3-yl)thio) acetamide scaffold. The initial hit compound 7 (PAO1-L IC50 0.98 ± 0.02 µM, PA14 inactive at 10 µM) was obtained through a virtual screening campaign performed on the PqsR ligand binding domain using the University of Nottingham Managed Chemical Compound Collection. Hit optimisation gave compounds with enhanced potency against strains PAO1-L and PA14, evaluated using P. aeruginosa pqs-based QS bioreporter assays. Compound 40 (PAO1-L IC50 0.25 ± 0.12 µM, PA14 IC50 0.34 ± 0.03 µM) is one of the most potent PqsR antagonists reported showing significant inhibition of P. aeruginosa pyocyanin production and pqs system signaling in both planktonic cultures and biofilms. The co-crystal structure of 40 with the PqsR ligand binding domain revealed the specific binding interactions occurring between inhibitor and this key regulatory protein.

17.
Mol Pharm ; 17(5): 1458-1469, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-31951139

RESUMO

Antibiotic resistance is a major public health threat worldwide, and among others, about 80% of cystic fibrosis patients have chronic Pseudomonas aeruginosa (PA) lung infection resistant to many current antibiotics. Novel treatment strategies are therefore urgently needed. For lung infections, direct delivery of treatments to the site of action in the airway can achieve a higher local concentration with minimal systemic exposure and hence avoid risks of unwanted systemic adverse effects. Previously, a rat preclinical disease model for PA chronic lung infections has been reported. However, the role of this disease model in the development of new treatment has not been thoroughly evaluated. In this study, tobramycin (TOB) was used as a model antibiotic to evaluate the application of this preclinical disease model for PA treatments. The obtained data were used for pharmacokinetic-pharmacodynamic (PKPD) modeling. Plasma samples following pulmonary delivery of TOB via different dosing methods as well as growth and efficacy data from the chronic lung infection disease model following TOB treatments were collected for analysis and modeling. The developed PKPD model incorporates a semimechanistic description on biofilm development in chronic infections to allow the evaluation of drug action on bacteria in different states (i.e., planktonic, biofilm, and latent) and describes the available data from the efficacy study. The PKPD model can be used to support the application of the preclinical lung infection disease model by providing a quantitative description of the drug exposure-response relationship and a mechanistic platform to integrate all available PK and PKPD data with predictive capacity. With the support of appropriate experimental designs, the model can be further extended for other applications to, for instance, study the transition of bacteria between states and describe drug actions on biofilms.


Assuntos
Antibacterianos/farmacocinética , Desenvolvimento de Medicamentos , Pulmão/metabolismo , Infecções por Pseudomonas/tratamento farmacológico , Infecções Respiratórias/tratamento farmacológico , Tobramicina/farmacocinética , Animais , Doença Crônica , Masculino , Modelos Biológicos , Ratos , Ratos Sprague-Dawley
18.
Vet Rec ; 185(7): 206, 2019 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-31239295

RESUMO

BACKGROUND: Pseudomonas aeruginosa is an opportunistic pathogen and a major cause of infections. Widespread resistance in human infections are increasing the use of last resort antimicrobials such as polymyxins. However, these have been used for decades in veterinary medicine. Companion animals are an understudied source of antimicrobial resistant P. aeruginosa isolates. This study evaluated the susceptibility of P. aeruginosa veterinary isolates to polymyxins to determine whether the veterinary niche represents a potential reservoir of resistance genes for pathogenic bacteria in both animals and humans. METHODS AND RESULTS: Clinical P. aeruginosa isolates (n=24) from UK companion animals were compared for antimicrobial susceptibility to a panel of human-associated isolates (n=37). Minimum inhibitory concentration (MIC) values for polymyxin B and colistin in the companion animals was significantly higher than in human isolates (P=0.033 and P=0.013, respectively). Genotyping revealed that the veterinary isolates were spread throughout the P. aeruginosa population, with shared array types from human infections such as keratitis and respiratory infections, suggesting the potential for zoonotic transmission. Whole genome sequencing revealed mutations in genes associated with polymyxin resistance and other antimicrobial resistance-related genes. CONCLUSION: The high levels of resistance to polymyxin shown here, along with genetic similarities between some human and animal isolates, together suggest a need for sustained surveillance of this veterinary niche as a potential reservoir for resistant, clinically relevant bacteria in both animals and humans.


Assuntos
Farmacorresistência Bacteriana , Animais de Estimação/microbiologia , Polimixinas/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Animais , Humanos , Pseudomonas aeruginosa/isolamento & purificação , Reino Unido , Medicina Veterinária
20.
Microbiol Resour Announc ; 8(13)2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30923236

RESUMO

Pseudomonas aeruginosa is an environmental bacterium and opportunistic pathogen. Here, we present draft genome sequences for 161 isolates from diverse clinical and environmental sources. This set of genome sequences complements other major public data releases from the International Pseudomonas Consortium Database.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...