Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antioxid Redox Signal ; 31(17): 1272-1288, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31317766

RESUMO

Aims: The aim of this study was to determine whether deleting the gene encoding glutaredoxin-2 (GRX2) could protect mice from diet-induced weight gain. Results: Subjecting wild-type littermates to a high fat diet (HFD) induced a significant increase in overall body mass, white adipose tissue hypertrophy, lipid droplet accumulation in hepatocytes, and higher circulating insulin and triglyceride levels. In contrast, GRX2 heterozygotes (GRX2+/-) fed an HFD had a body mass, white adipose tissue weight, and hepatic and circulating lipid and insulin levels similar to littermates fed a control diet. Examination of the bioenergetics of muscle mitochondria revealed that this protective effect was associated with an increase in respiration and proton leaks. Muscle mitochondria from GRX2+/- mice had a ∼2- to 3-fold increase in state 3 (phosphorylating) respiration when pyruvate/malate or succinate served as substrates and a ∼4-fold increase when palmitoyl-carnitine was being oxidized. Proton leaks were ∼2- to 3-fold higher in GRX2+/- muscle mitochondria. Treatment of mitochondria with either guanosine diphosphate, genipin, or octanoyl-carnitine revealed that the higher rate of O2 consumption under state 4 conditions was associated with increased leaks through uncoupling protein-3 and adenine nucleotide translocase. GRX2+/- mitochondria also had better protection from oxidative distress. Innovation: For the first time, we demonstrate that deleting the Grx2 gene can protect from diet-induced weight gain and the development of obesity-related disorders. Conclusions: Deleting the Grx2 gene protects mice from diet-induced weight gain. This effect was related to an increase in muscle fuel combustion, mitochondrial respiration, proton leaks, and reactive oxygen species handling. Antioxid. Redox Signal. 31, 1272-1288.


Assuntos
Respiração Celular , Dieta Hiperlipídica/efeitos adversos , Glutarredoxinas/deficiência , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Prótons , Aumento de Peso/efeitos dos fármacos , Animais , Feminino , Deleção de Genes , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Aumento de Peso/genética
2.
Free Radic Biol Med ; 135: 15-27, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30794944

RESUMO

Here, we examined the hydrogen peroxide (H2O2) producing capacities of pyruvate dehydrogenase (PDH), α-ketoglutarate dehydrogenase (KGDH), proline dehydrogenase (PRODH), glycerol-3-phosphate dehydrogenase (G3PDH), succinate dehydrogenase (SDH; complex II), and branched-chain keto acid dehydrogenase (BCKDH), in cardiac and liver mitochondria isolated from C57BL/6N (6N) and C57BL/6J (6J) mice. Various inhibitor combinations were used to suppress ROS production by complexes I, II, and III and estimate the native rates of H2O2 production for these enzymes. Overall, liver mitochondria from 6N mice produced ∼2-fold more ROS than samples enriched from 6J mice. This was attributed, in part, to the higher levels of glutathione peroxidase-1 (GPX1) and catalase (CAT) in 6J mitochondria. Intriguingly, PDH, KGDH, and SDH comprised up to ∼95% of the ROS generating capacity of permeabilized 6N liver mitochondria, with PRODH, G3PDH, and BCKDH making minor contributions. By contrast, BCKDH accounted for ∼34% of the production in permeabilized 6J mitochondria with KGDH and PRODH accounting for ∼23% and ∼19%. G3PDH produced high amounts of ROS, accounting for ∼52% and ∼39% of the total H2O2 generating capacity in 6N and 6J heart mitochondria. PRODH was also an important ROS source in 6J mitochondria, accounting for ∼43% of the total H2O2 formed. In addition, 6J cardiac mitochondria produced significantly more ROS than 6N mitochondria. Taken together, our findings demonstrate that these other generators can also serve as important sources of H2O2. Additionally, we found that mouse strain influences the rate of production from the individual sites that were studied.


Assuntos
Peróxido de Hidrogênio/metabolismo , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Hepáticas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/metabolismo , Animais , Catalase/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Glutationa Peroxidase/metabolismo , Glicerolfosfato Desidrogenase , Complexo Cetoglutarato Desidrogenase/metabolismo , Cetona Oxirredutases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Prolina Oxidase/metabolismo , Succinato Desidrogenase/metabolismo , Superóxidos/metabolismo , Glutationa Peroxidase GPX1
3.
Biochem Biophys Res Commun ; 498(1): 214-220, 2018 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-29501746

RESUMO

Recent work has found that complex I is the sole source of reactive oxygen species (ROS) during myocardial ischemia-reperfusion (IR) injury. However, it has also been reported that heart mitochondria can also generate ROS from other sources in the respiratory chain and Krebs cycle. This study examined the impact of partial complex I deficiency due to selective loss of the Ndufs4 gene on IR injury to heart tissue. Mice heterozygous for NDUFS4 (NDUFS4+/-) did not display any significant changes in overall body or organ weight when compared to wild-type (WT) littermates. There were no changes in superoxide (O2●-)/hydrogen peroxide (H2O2) release from cardiac or liver mitochondria isolated from NDUFS4 ±â€¯mice. Using selective ROS release inhibitors, we found that complex III is a major source of ROS in WT and NDUFS4 ±â€¯cardiac mitochondria respiring under state 4 conditions. Subjecting hearts from NDUFS4 ±â€¯mice to reperfusion injury revealed that the partial loss of complex I decreases contractile recovery and increases myocardial infarct size. These results correlated with a significant increase in O2●-/H2O2 release rates in mitochondria isolated from NDUFS4 ±â€¯hearts subjected to an IR challenge. Taken together, these results demonstrate that the partial absence of complex I sensitizes the myocardium towards IR injury and that the main source of ROS following reperfusion is complex III.


Assuntos
Complexo I de Transporte de Elétrons/deficiência , Peróxido de Hidrogênio/metabolismo , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Superóxidos/metabolismo , Animais , Antioxidantes/metabolismo , Peso Corporal , Complexo I de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Deleção de Genes , Masculino , Camundongos , Miocárdio/metabolismo , Miocárdio/patologia , Tamanho do Órgão
4.
Redox Biol ; 15: 216-227, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29274570

RESUMO

Mitochondria are critical sources of hydrogen peroxide (H2O2), an important secondary messenger in mammalian cells. Recent work has shown that O2•-/H2O2 emission from individual sites of production in mitochondria is regulated by protein S-glutathionylation. Here, we conducted the first examination of O2•-/H2O2 release rates from cardiac and liver mitochondria isolated from mice deficient for glutaredoxin-2 (GRX2), a matrix-associated thiol oxidoreductase that facilitates the S-glutathionylation and deglutathionylation of proteins. Liver mitochondria isolated from mice heterozygous (GRX2+/-) and homozygous (GRX2-/-) for glutaredoxin-2 displayed a significant decrease in O2•-/H2O2 release when oxidizing pyruvate or 2-oxoglutarate. The genetic deletion of the Grx2 gene was associated with increased protein expression of pyruvate dehydrogenase (PDH) but not 2-oxoglutarate dehydrogenase (OGDH). By contrast, O2•-/H2O2 production was augmented in cardiac mitochondria from GRX2+/- and GRX2-/- mice metabolizing pyruvate or 2-oxoglutarate which was associated with decreased PDH and OGDH protein levels. ROS production was augmented in liver and cardiac mitochondria metabolizing succinate. Inhibitor studies revealed that OGDH and Complex III served as high capacity ROS release sites in liver mitochondria. By contrast, Complex I and Complex III were found to be the chief O2•-/H2O2 emitters in cardiac mitochondria. These findings identify an essential role for GRX2 in regulating O2•-/H2O2 release from mitochondria in liver and cardiac tissue. Our results demonstrate that the GRX2-mediated regulation of O2•-/H2O2 release through the S-glutathionylation of mitochondrial proteins may play an integral role in controlling cellular ROS signaling.


Assuntos
Glutarredoxinas/genética , Mitocôndrias Cardíacas/genética , Mitocôndrias Hepáticas/genética , Piruvato Desidrogenase (Lipoamida)/genética , Animais , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Glutarredoxinas/metabolismo , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Complexo Cetoglutarato Desidrogenase/genética , Complexo Cetoglutarato Desidrogenase/metabolismo , Camundongos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Hepáticas/metabolismo , Miocárdio , Piruvato Desidrogenase (Lipoamida)/metabolismo , Ácido Succínico/metabolismo , Superóxidos/metabolismo
5.
Biol Chem ; 398(11): 1209-1227, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-28675747

RESUMO

The molecular oxygen (O2) paradox was coined to describe its essential nature and toxicity. The latter characteristic of O2 is associated with the formation of reactive oxygen species (ROS), which can damage structures vital for cellular function. Mammals are equipped with antioxidant systems to fend off the potentially damaging effects of ROS. However, under certain circumstances antioxidant systems can become overwhelmed leading to oxidative stress and damage. Over the past few decades, it has become evident that ROS, specifically H2O2, are integral signaling molecules complicating the previous logos that oxyradicals were unfortunate by-products of oxygen metabolism that indiscriminately damage cell structures. To avoid its potential toxicity whilst taking advantage of its signaling properties, it is vital for mitochondria to control ROS production and degradation. H2O2 elimination pathways are well characterized in mitochondria. However, less is known about how H2O2 production is controlled. The present review examines the importance of mitochondrial H2O2 in controlling various cellular programs and emerging evidence for how production is regulated. Recently published studies showing how mitochondrial H2O2 can be used as a secondary messenger will be discussed in detail. This will be followed with a description of how mitochondria use S-glutathionylation to control H2O2 production.


Assuntos
Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Oxigênio/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo , Animais , Humanos , Espécies Reativas de Oxigênio/metabolismo
6.
Biochim Biophys Acta Gen Subj ; 1861(8): 1960-1969, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28506882

RESUMO

Pyruvate dehydrogenase (PDHC) and α-ketoglutarate dehydrogenase complex (KGDHC) are important sources of reactive oxygen species (ROS). In addition, it has been found that mitochondria can also serve as sinks for cellular hydrogen peroxide (H2O2). However, the ROS forming and quenching capacity of liver mitochondria has never been thoroughly examined. Here, we show that mouse liver mitochondria use catalase, glutathione (GSH), and peroxiredoxin (PRX) systems to quench ROS. Incubation of mitochondria with catalase inhibitor 3-amino-1,2,4-triazole (triazole) induced a significant increase in pyruvate or α-ketoglutarate driven O2-/H2O2 formation. 1-Choro-2,4-dinitrobenzene (CDNB), which depletes glutathione (GSH), elicited a similar effect. Auranofin (AF), a thioredoxin reductase-2 (TR2) inhibitor which disables the PRX system, did not significantly change O2-/H2O2 formation. By contrast catalase, GSH, and PRX were all required to scavenging extramitochondrial H2O2. In this study, the ROS forming potential of PDHC, KGDHC, Complex I, and Complex III was also profiled. Titration of mitochondria with 3-methyl-2-oxovaleric acid (KMV), a specific inhibitor for O2-/H2O2 production by KGDHC, induced a ~86% and ~84% decrease in ROS production during α-ketoglutarate and pyruvate oxidation. Titration of myxothiazol, a Complex III inhibitor, decreased O2-/H2O2 formation by ~45%. Rotenone also lowered ROS production in mitochondria metabolizing pyruvate or α-ketoglutarate indicating that Complex I does not contribute to ROS production during forward electron transfer from NADH. Taken together, our results indicate that KGDHC and Complex III are high capacity sites for O2-/H2O2 production in mouse liver mitochondria. We also confirm that catalase plays a role in quenching either exogenous or intramitochondrial H2O2.


Assuntos
Peróxido de Hidrogênio/metabolismo , Mitocôndrias Hepáticas/metabolismo , Superóxidos/metabolismo , Animais , Caprilatos/farmacologia , Catalase/fisiologia , Complexo III da Cadeia de Transporte de Elétrons/fisiologia , Glutationa/metabolismo , Complexo Cetoglutarato Desidrogenase/fisiologia , Masculino , Metacrilatos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Peroxirredoxinas/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Sulfetos/farmacologia , Tiazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA