Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cereb Cortex ; 34(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39191663

RESUMO

The visual word form area in the occipitotemporal sulcus (here OTS-words) is crucial for reading and shows a preference for text stimuli. We hypothesized that this text preference may be driven by lexical processing. Hence, we performed three fMRI experiments (n = 15), systematically varying participants' task and stimulus, and separately evaluated middle mOTS-words and posterior pOTS-words. Experiment 1 contrasted text with other visual stimuli to identify both OTS-words subregions. Experiment 2 utilized an fMRI adaptation paradigm, presenting compound words as texts or emojis. In experiment 3, participants performed a lexical or color judgment task on compound words in text or emoji format. In experiment 2, pOTS-words, but not mOTS-words, showed fMRI adaptation for compound words in both formats. In experiment 3, both subregions showed higher responses to compound words in emoji format. Moreover, mOTS-words showed higher responses during the lexical judgment task and a task-stimulus interaction. Multivariate analyses revealed that distributed responses in pOTS-words encode stimulus and distributed responses in mOTS-words encode stimulus and task. Together, our findings suggest that the function of the OTS-words subregions goes beyond the specific visual processing of text and that these regions are flexibly recruited whenever semantic meaning needs to be assigned to visual input.


Assuntos
Julgamento , Imageamento por Ressonância Magnética , Leitura , Humanos , Masculino , Feminino , Julgamento/fisiologia , Adulto Jovem , Adulto , Estimulação Luminosa/métodos , Mapeamento Encefálico , Reconhecimento Visual de Modelos/fisiologia , Semântica , Lobo Temporal/fisiologia , Lobo Temporal/diagnóstico por imagem , Lobo Occipital/fisiologia , Lobo Occipital/diagnóstico por imagem
2.
bioRxiv ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37986766

RESUMO

The visual word form area in the occipitotemporal sulcus (OTS), here referred to as OTS-words, responds more strongly to text than other visual stimuli and is crucial for reading. We hypothesized, that this text preference may be driven by a preference for reading tasks, as in most prior fMRI studies only the text stimuli were readable. Hence, we performed three fMRI experiments (N=15) and systematically varied the participant's task and the stimulus, investigating mOTS-words and pOTS-words subregions. In experiment 1, we contrasted text stimuli with non-readable visual stimuli (faces, limbs, houses, objects). Experiment 2 utilized an fMRI adaptation paradigm, presenting compound words in text or emoji formats. In experiment 3, participants performed a reading or a color task on compound words in text or emoji format. Using experiment 1 data, we identified mOTS-words and pOTS-words by contrasting texts with non-readable stimuli. In experiment 2, pOTS-words, but not mOTS-words, showed fMRI adaptation for compound words in both text and emoji formats. In experiment 3, surprisingly, both subregions showed higher responses to compound words in emoji than text format. Moreover, mOTS-words showed higher responses during the reading than the color task and a task-stimulus interaction. Multivariate analyses revealed that distributed responses in pOTS-words encode the visual stimulus, while responses in mOTS-words encode both stimulus and task. Together, our findings suggest that the function of the OTS-words subregions goes beyond the specific visual processing of text and that these regions are flexibly recruited whenever semantic meaning needs to be assigned to visual input.

3.
Nat Commun ; 14(1): 8010, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049393

RESUMO

Regions in ventral temporal cortex that are involved in visual recognition of categories like words and faces undergo differential development during childhood. However, categories are also represented in distributed responses across high-level visual cortex. How distributed category representations develop and if this development relates to behavioral changes in recognition remains largely unknown. Here, we used functional magnetic resonance imaging to longitudinally measure the development of distributed responses across ventral temporal cortex to 10 categories in school-age children over several years. Our results reveal both strengthening and weakening of category representations with age, which was mainly driven by changes across category-selective voxels. Representations became particularly more distinct for words in the left hemisphere and for faces bilaterally. Critically, distinctiveness for words and faces across category-selective voxels in left and right lateral ventral temporal cortex, respectively, predicted individual children's word and face recognition performance. These results suggest that the development of distributed representations in ventral temporal cortex has behavioral ramifications and advance our understanding of prolonged cortical development during childhood.


Assuntos
Reconhecimento Facial , Córtex Visual , Criança , Humanos , Reconhecimento Facial/fisiologia , Mapeamento Encefálico/métodos , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiologia , Córtex Visual/diagnóstico por imagem , Córtex Visual/fisiologia , Face , Imageamento por Ressonância Magnética/métodos , Reconhecimento Visual de Modelos/fisiologia , Estimulação Luminosa
4.
Nat Commun ; 13(1): 997, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35194018

RESUMO

Development of myelin, a fatty sheath that insulates nerve fibers, is critical for brain function. Myelination during infancy has been studied with histology, but postmortem data cannot evaluate the longitudinal trajectory of white matter development. Here, we obtained longitudinal diffusion MRI and quantitative MRI measures of longitudinal relaxation rate (R1) of white matter in 0, 3 and 6 months-old human infants, and developed an automated method to identify white matter bundles and quantify their properties in each infant's brain. We find that R1 increases from newborns to 6-months-olds in all bundles. R1 development is nonuniform: there is faster development in white matter that is less mature in newborns, and development rate increases along inferior-to-superior as well as anterior-to-posterior spatial gradients. As R1 is linearly related to myelin fraction in white matter bundles, these findings open new avenues to elucidate typical and atypical white matter myelination in early infancy.


Assuntos
Substância Branca , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética/métodos , Bainha de Mielina , Substância Branca/diagnóstico por imagem
5.
Commun Biol ; 4(1): 1191, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34650227

RESUMO

Development of cortical tissue during infancy is critical for the emergence of typical brain functions in cortex. However, how cortical microstructure develops during infancy remains unknown. We measured the longitudinal development of cortex from birth  to six months of age  using multimodal quantitative imaging of cortical microstructure. Here we show that infants' cortex undergoes profound microstructural tissue growth during the first six months of human life. Comparison of postnatal to prenatal transcriptomic gene expression data demonstrates that myelination and synaptic processes are dominant contributors to this postnatal microstructural tissue growth. Using visual cortex as a model system, we find hierarchical microstructural growth: higher-level visual areas have less mature tissue at birth than earlier visual areas but grow at faster rates. This overturns the prominent view that visual areas that are most mature at birth develop fastest. Together, in vivo, longitudinal, and quantitative measurements, which we validated with ex vivo transcriptomic data, shed light on the rate, sequence, and biological mechanisms of developing cortical systems during early infancy. Importantly, our findings propose a hypothesis that cortical myelination is a key factor in cortical development during early infancy, which has important implications for diagnosis of neurodevelopmental disorders and delays in infants.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Córtex Visual/crescimento & desenvolvimento , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Córtex Visual/fisiologia
6.
Nat Hum Behav ; 5(12): 1686-1697, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34140657

RESUMO

Human ventral temporal cortex contains category-selective regions that respond preferentially to ecologically relevant categories such as faces, bodies, places and words and that are causally involved in the perception of these categories. How do these regions develop during childhood? We used functional magnetic resonance imaging to measure longitudinal development of category selectivity in school-age children over 1 to 5 years. We discovered that, from young childhood to the teens, face- and word-selective regions in ventral temporal cortex expand and become more category selective, but limb-selective regions shrink and lose their preference for limbs. Critically, as a child develops, increases in face and word selectivity are directly linked to decreases in limb selectivity, revealing that during childhood, limb selectivity in ventral temporal cortex is repurposed into word and face selectivity. These data provide evidence for cortical recycling during childhood development. This has important implications for understanding typical as well as atypical brain development and necessitates a rethinking of how cortical function develops during childhood.


Assuntos
Desenvolvimento Infantil/fisiologia , Córtex Visual/fisiologia , Adolescente , Mapeamento Encefálico , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Estimulação Luminosa , Córtex Visual/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA