Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 211(8): 1240-1248, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37682538

RESUMO

B cell-targeted therapies are effective for treating multiple different kidney diseases in humans and also protect mice from Adriamycin nephropathy. Because glomerular IgM is frequently seen in both humans and mice with "nonimmune" forms of glomerular disease, we hypothesized that natural IgM binds to epitopes displayed in the injured glomerulus, exacerbating injury. To test this hypothesis, we induced Adriamycin nephropathy in BALB/C mice that cannot secrete soluble IgM (sIgM-/- mice) and compared them with BALB/C controls. Contrary to our prediction, we found that female sIgM-/- mice developed higher mortality and more severe kidney injury after injection of Adriamycin. The absence of soluble IgM did not reduce glomerular complement activation, and IgG was seen deposited within the injured glomeruli. Furthermore, we discovered that female sIgM-/- mice have higher levels of anti-cardiolipin IgG, and that IgG from these mice binds to epitopes in the injured kidney. These findings indicate that natural IgM may prevent generation of autoreactive IgG. Circulating levels of anti-cardiolipin IgG decreased after induction of kidney injury in female mice, consistent with deposition of the Abs in injured tissues. Better understanding of the mechanisms by which the immune system modulates and amplifies kidney injury may enable the development of targeted therapies to slow kidney disease progression.


Assuntos
Imunoglobulina M , Nefropatias , Animais , Feminino , Camundongos , Doxorrubicina , Epitopos , Imunoglobulina G , Camundongos Endogâmicos BALB C
2.
Mol Immunol ; 157: 112-128, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37018938

RESUMO

The natural monoclonal antibody B4-IgM recognizes murine annexin 4 (mAn4) and exacerbates ischemia-reperfusion injury in many mouse models. During apoptosis, the intracellular mAn4 protein translocates to the membrane surface, remaining attached to the outer membrane leaflet where it is recognized by the anti-mAn4 B4-IgM antibody. B4-IgM does not recognize human annexin 4 (hAn4). However, the B4-IgM antibody epitope was detected by Western blot of unknown human proteins and by flow cytometry on all studied human cell lines undergoing apoptosis and on a minor subset of healthy cells. The B4-IgM antibody also recognizes the epitope on necrotic cells in cytoplasmic proteins, apparently entering through pores large enough to allow natural antibodies to penetrate the cells and bind to the epitope expressed on self-proteins. Using proteomics and site-directed mutagenesis, we found that B4-IgM binds to an epitope with post-translationally modified acetylated N-terminal methionine, followed by either glutamic or aspartic acid. The epitope is not induced by apoptosis or injury because this modification can also occur during protein translation. This finding reveals an additional novel mechanism whereby injured cells are detected by natural antibodies that initiate pathogenic complement activation through the recognition of epitopes that are shared across multiple proteins found in variable cell lines.


Assuntos
Anticorpos Monoclonais , Ácido Glutâmico , Camundongos , Animais , Humanos , Ácido Glutâmico/metabolismo , Metionina/metabolismo , Imunoglobulina M , Epitopos , Racemetionina/metabolismo , Anexinas/metabolismo , Processamento de Proteína Pós-Traducional
3.
J Am Soc Nephrol ; 34(7): 1151-1154, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36995143

RESUMO

SIGNIFICANCE STATEMENT: Histologic quantification of complement C3 deposits in kidney biopsies provides prognostic information in patients with glomerulonephritis. Unfortunately, kidney biopsies are invasive procedures that cannot be performed regularly and only provide a snapshot of a small portion of one kidney at the time of sampling. We have developed a method to noninvasively detect specific C3 fragment deposition throughout both kidneys, using a monoclonal antibody targeting tissue-bound iC3b/C3d linked to a bioluminescent resonance energy transfer construct that emits near-infrared light. In a mouse model of glomerulonephritis, the probe detected iC3b/C3d in kidneys of live mice by bioluminescent imaging. This demonstrates that noninvasive imaging with an anti-iC3b/C3d probe can be used to monitor inflammation in the kidneys.


Assuntos
Complemento C3b , Glomerulonefrite , Animais , Camundongos , Complemento C3d , Rim/diagnóstico por imagem , Anticorpos Monoclonais
4.
PLoS Pathog ; 18(5): e1009942, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35512014

RESUMO

Previous studies have shown after the resolution of acute infection and viraemia, foot-and-mouth disease virus (FMDV) capsid proteins and/or genome are localised in the light zone of germinal centres of lymphoid tissue in cattle and African buffalo. The pattern of staining for FMDV proteins was consistent with the virus binding to follicular dendritic cells (FDCs). We have now demonstrated a similar pattern of FMDV protein staining in mouse spleens after acute infection and showed FMDV proteins are colocalised with FDCs. Blocking antigen binding to complement receptor type 2 and 1 (CR2/CR1) prior to infection with FMDV significantly reduced the detection of viral proteins on FDCs and FMDV genomic RNA in spleen samples. Blocking the receptors prior to infection also significantly reduced neutralising antibody titres, through significant reduction in their avidity to the FMDV capsid. Therefore, the binding of FMDV to FDCs and sustained induction of neutralising antibody responses are dependent on FMDV binding to CR2/CR1 in mice.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais/metabolismo , Proteínas do Capsídeo/metabolismo , Bovinos , Células Dendríticas Foliculares/metabolismo , Vírus da Febre Aftosa/genética , Centro Germinativo , Camundongos , Receptores de Complemento/metabolismo
5.
Am J Physiol Renal Physiol ; 321(4): F505-F516, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34459222

RESUMO

Focal segmental glomerulosclerosis (FSGS) and minimal change disease (MCD) are common forms of idiopathic nephrotic syndrome. The causes of these diseases are incompletely understood, but the response of patients to immunosuppressive therapies suggests that their pathogenesis is at least in part immune mediated. Preclinical and clinical research indicates that activation of the classical pathway of complement contributes to glomerular injury in FSGS. Glomerular IgM deposits are also prominent in some patients, raising the possibility that IgM is a trigger of classical pathway activation. In the present study, we examined the pattern of complement activation in the glomeruli and plasma of patients with nephrotic syndrome. We also tested whether patients with FSGS and MCD have elevated levels of natural IgM reactive with epitopes on glomerular endothelial cells and cardiolipin. We found evidence of classical pathway activation in patients with idiopathic nephrotic syndrome compared with healthy control subjects. We also detected higher levels of self-reactive IgM to both targets. Based on these results, IgM and classical pathway activation may contribute to disease pathogenesis in some patients with FSGS and MCD.NEW & NOTEWORTHY IgM is detected in biopsies from some patients with nephrotic syndrome, although this has been attributed to passive trapping of the protein. We found, however, that IgM colocalizes with complement activation fragments in some glomeruli. We also found that affected patients had higher levels of IgM reactive to glomerular endothelial cell epitopes. Thus, IgM activates the complement system in the glomeruli of some patients with nephrotic syndrome and may contribute to injury.


Assuntos
Cardiolipinas/imunologia , Via Clássica do Complemento , Proteínas do Sistema Complemento/análise , Células Endoteliais/imunologia , Epitopos , Glomerulosclerose Segmentar e Focal/imunologia , Imunoglobulina M/análise , Glomérulos Renais/imunologia , Nefrose Lipoide/imunologia , Síndrome Nefrótica/imunologia , Adulto , Idoso , Especificidade de Anticorpos , Estudos de Casos e Controles , Via Clássica do Complemento/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Feminino , Glomerulosclerose Segmentar e Focal/sangue , Glomerulosclerose Segmentar e Focal/tratamento farmacológico , Glomerulosclerose Segmentar e Focal/patologia , Humanos , Imunoglobulina M/sangue , Imunossupressores/uso terapêutico , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/patologia , Masculino , Pessoa de Meia-Idade , Nefrose Lipoide/tratamento farmacológico , Nefrose Lipoide/patologia , Síndrome Nefrótica/tratamento farmacológico , Síndrome Nefrótica/patologia , Resultado do Tratamento , Adulto Jovem
6.
Front Immunol ; 12: 714055, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434196

RESUMO

Cleavage of C3 to C3a and C3b plays a central role in the generation of complement-mediated defences. Although the thioester-mediated surface deposition of C3b has been well-studied, fluid phase dimers of C3 fragments remain largely unexplored. Here we show C3 cleavage results in the spontaneous formation of C3b dimers and present the first X-ray crystal structure of a disulphide-linked human C3d dimer. Binding studies reveal these dimers are capable of crosslinking complement receptor 2 and preliminary cell-based analyses suggest they could modulate B cell activation to influence tolerogenic pathways. Altogether, insights into the physiologically-relevant functions of C3d(g) dimers gained from our findings will pave the way to enhancing our understanding surrounding the importance of complement in the fluid phase and could inform the design of novel therapies for immune system disorders in the future.


Assuntos
Complemento C3d/química , Modelos Moleculares , Multimerização Proteica , Complemento C3/química , Complemento C3/imunologia , Complemento C3d/imunologia , Humanos , Ativação Linfocitária/imunologia , Linfócitos/imunologia , Linfócitos/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Conformação Proteica , Proteólise , Proteínas Recombinantes/química , Relação Estrutura-Atividade
7.
Am J Transplant ; 21(6): 2067-2078, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33210808

RESUMO

Complement is known to play a role in ischemia and reperfusion injury (IRI). A general paradigm is that complement is activated by self-reactive natural IgM antibodies (nAbs), after they engage postischemic neoepitopes. However, a role for nAbs in lung transplantation (LTx) has not been explored. Using mouse models of LTx, we investigated the role of two postischemic neoepitopes, modified annexin IV (B4) and a subset of phospholipids (C2), in LTx. Antibody deficient Rag1-/- recipient mice were protected from LTx IRI. Reconstitution with either B4 or C2nAb restored IRI, with C2 significantly more effective than B4 nAb. Based on these information, we developed/characterized a novel complement inhibitor composed of single-chain antibody (scFv) derived from the C2 nAb linked to Crry (C2scFv-Crry), a murine inhibitor of C3 activation. Using an allogeneic LTx, in which recipients contain a full nAb repertoire, C2scFv-Crry targeted to the LTx, inhibited IRI, and delayed acute rejection. Finally, we demonstrate the expression of the C2 neoepitope in human donor lungs, highlighting the translational potential of this approach.


Assuntos
Lesão Pulmonar , Transplante de Pulmão , Traumatismo por Reperfusão , Transplantes , Animais , Inativadores do Complemento , Humanos , Imunoglobulina M , Transplante de Pulmão/efeitos adversos , Camundongos , Traumatismo por Reperfusão/prevenção & controle
8.
Front Immunol ; 11: 575154, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178202

RESUMO

Natural IgM antibodies (NAbs) have been shown to recognize injury-associated neoepitopes and to initiate pathogenic complement activation. The NAb termed C2 binds to a subset of phospholipids displayed on injured cells, and its role(s) in arthritis, as well as the potential therapeutic benefit of a C2 NAb-derived ScFv-containing protein fused to a complement inhibitor, complement receptor-related y (Crry), on joint inflammation are unknown. Our first objective was to functionally test mAb C2 binding to apoptotic cells from the joint and also evaluate its inflammation enhancing capacity in collagen antibody-induced arthritis (CAIA). The second objective was to generate and test the complement inhibitory capacity of C2-Crry fusion protein in the collagen-induced arthritis (CIA) model. The third objective was to demonstrate in vivo targeting of C2-Crry to damaged joints in mice with arthritis. The effect of C2-NAb on CAIA in C57BL/6 mice was examined by inducing a suboptimal disease. The inhibitory effect of C2-Crry in DBA/1J mice with CIA was determined by injecting 2x per week with a single dose of 0.250 mg/mouse. Clinical disease activity (CDA) was examined, and knee joints were fixed for analysis of histopathology, C3 deposition, and macrophage infiltration. In mice with suboptimal CAIA, at day 10 there was a significant (p < 0.017) 74% increase in the CDA in mice treated with C2 NAb, compared to mice treated with F632 control NAb. In mice with CIA, at day 35 there was a significant 39% (p < 0.042) decrease in the CDA in mice treated with C2-Crry. Total scores for histopathology were also 50% decreased (p < 0.0005) in CIA mice treated with C2-Crry. C3 deposition was significantly decreased in the synovium (44%; p < 0.026) and on the surface of cartilage (42%; p < 0.008) in mice treated with C2-Crry compared with PBS treated CIA mice. Furthermore, C2-Crry specifically bound to apoptotic fibroblast-like synoviocytes in vitro, and also localized in the knee joints of arthritic mice as analyzed by in vivo imaging. In summary, NAb C2 enhanced arthritis-related injury, and targeted delivery of C2-Crry to inflamed joints demonstrated disease modifying activity in a mouse model of human inflammatory arthritis.


Assuntos
Antirreumáticos/farmacologia , Artrite Experimental/tratamento farmacológico , Ativação do Complemento/efeitos dos fármacos , Imunoglobulina M/farmacologia , Articulações/efeitos dos fármacos , Receptores de Complemento 3b/metabolismo , Anticorpos de Cadeia Única/farmacologia , Sinoviócitos/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Artrite Experimental/imunologia , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/imunologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Articulações/imunologia , Articulações/metabolismo , Articulações/patologia , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Proteínas Recombinantes de Fusão/farmacologia , Sinoviócitos/imunologia , Sinoviócitos/metabolismo , Sinoviócitos/patologia , Timócitos/efeitos dos fármacos , Timócitos/imunologia , Timócitos/metabolismo , Timócitos/patologia
9.
J Immunol ; 203(12): 3136-3147, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31732528

RESUMO

Humoral autoimmunity is central to the development of systemic lupus erythematosus (SLE). Complement receptor type 2 (CR2)/CD21 plays a key role in the development of high-affinity Abs and long-lasting memory to foreign Ags. When CR2 is bound by its primary C3 activation fragment-derived ligand, designated C3d, it coassociates with CD19 on B cells to amplify BCR signaling. C3d and CR2 also mediate immune complex binding to follicular dendritic cells. As the development of SLE involves subversion of normal B cell tolerance checkpoints, one might expect that CR2 ligation by C3d-bound immune complexes would promote development of SLE. However, prior studies in murine models of SLE using gene-targeted Cr2-/- mice, which lack both CR2 and complement receptor 1 (CR1), have demonstrated contradictory results. As a new approach, we developed a highly specific mouse anti-mouse C3d mAb that blocks its interaction with CR2. With this novel tool, we show that disruption of the critical C3d-CR2 ligand-receptor binding step alone substantially ameliorates autoimmunity and renal disease in the MRL/lpr model of SLE.


Assuntos
Complexo Antígeno-Anticorpo/imunologia , Complemento C3d/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Complexo Antígeno-Anticorpo/metabolismo , Autoanticorpos/imunologia , Autoimunidade , Biomarcadores , Complemento C3d/antagonistas & inibidores , Complemento C3d/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Epitopos de Linfócito T/imunologia , Feminino , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Mediadores da Inflamação , Ligantes , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/metabolismo , Camundongos , Camundongos Endogâmicos MRL lpr , Camundongos Knockout , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/imunologia
10.
Mol Imaging Biol ; 21(3): 473-481, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-29998399

RESUMO

PURPOSE: Diagnosis and therapeutic monitoring of chronic bacterial infection requires methods to detect and localize sites of infection accurately. Complement C3 activation fragments are generated and covalently bound to selective bacterial pathogens during the immune response and can serve as biomarkers of ongoing bacterial infection. We have developed several probes for detecting tissue-bound C3 deposits, including a monoclonal antibody (mAb 3d29) that recognizes the tissue-bound terminal processing fragments iC3b and C3d but does not recognize native circulating C3 or tissue-bound C3b. PROCEDURES: To determine whether mAb 3d29 could be used to detect chronic Mycobacterium tuberculosis infection non-invasively, aerosol-infected female C3HeB/FeJ mice were injected with [125I]3d29 mAb and either imaged using single-photon emission computed tomography (SPECT)/X-ray computed tomography (CT) imaging at 24 and 48 h after radiotracer injection or being subjected to biodistribution analysis. RESULTS: Discrete lesions were detected by SPECT/CT imaging in the lungs and spleens of infected mice, consistent with the location of granulomas in the infected animals as detected by CT. Low-level signal was seen in the spleens of uninfected mice and no signal was seen in the lungs of healthy mice. Immunofluorescence microscopy revealed that 3d29 in the lungs of infected mice co-localized with aggregates of macrophages (detected with anti-CD68 antibodies). 3d29 was detected in the cytoplasm of macrophages, consistent with the location of internalized M. tuberculosis. 3d29 was also present within alveolar epithelial cells, indicating that it detected M. tuberculosis phagocytosed by other CD68-positive cells. Healthy controls showed very little retention of fluorescent or radiolabeled antibody across tissues. Radiolabeled 3d29 compared with radiolabeled isotype control showed a 3.5:1 ratio of increased uptake in infected lungs, indicating specific uptake by 3d29. CONCLUSION: 3d29 can be used to detect and localize areas of infection with M. tuberculosis non-invasively by 24 h after radiotracer injection and with high contrast.


Assuntos
Anticorpos Monoclonais/metabolismo , Complemento C3/imunologia , Radioisótopos do Iodo/química , Mycobacterium tuberculosis/fisiologia , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Tuberculose/diagnóstico por imagem , Animais , Feminino , Imunoglobulina G/metabolismo , Pulmão/diagnóstico por imagem , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Distribuição Tecidual , Tuberculose/microbiologia , Tuberculose/patologia
11.
Eur J Immunol ; 48(5): 791-802, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29389016

RESUMO

Natural IgM binds to glomerular epitopes in several progressive kidney diseases. Previous work has shown that IgM also binds within the glomerulus after ischemia/reperfusion (I/R) but does not fully activate the complement system. Factor H is a circulating complement regulatory protein, and congenital or acquired deficiency of factor H is a strong risk factor for several types of kidney disease. We hypothesized that factor H controls complement activation by IgM in the kidney after I/R, and that heterozygous factor H deficiency would permit IgM-mediated complement activation and injury at this location. We found that mice with targeted heterozygous deletion of the gene for factor H developed more severe kidney injury after I/R than wild-type controls, as expected, but that complement activation within the glomeruli remained well controlled. Furthermore, mice that are unable to generate soluble IgM were not protected from renal I/R, even in the setting of heterozygous factor H deficiency. These results demonstrate that factor H is important for limiting injury in the kidney after I/R, but it is not critical for controlling complement activation by immunoglobulin within the glomerulus in this setting. IgM binds to glomerular epitopes after I/R, but it is not a significant source of injury.


Assuntos
Injúria Renal Aguda/patologia , Ativação do Complemento/imunologia , Fator H do Complemento/deficiência , Fator H do Complemento/imunologia , Imunoglobulina M/imunologia , Nefropatias/imunologia , Glomérulos Renais/imunologia , Traumatismo por Reperfusão/imunologia , Injúria Renal Aguda/genética , Animais , Fator H do Complemento/genética , Via Alternativa do Complemento/imunologia , Epitopos/imunologia , Doenças da Deficiência Hereditária de Complemento , Imunoglobulina M/deficiência , Nefropatias/genética , Glomérulos Renais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Traumatismo por Reperfusão/patologia
12.
Immunobiology ; 223(1): 125-134, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29017821

RESUMO

The use of C3d, the final degradation product of complement protein C3, as a "natural" adjuvant has been widely examined since the initial documentation of its immunogenicity-enhancing properties as a consequence of binding to complement receptor 2. Subsequently it was demonstrated that these effects are most evident when oligomeric, rather than when monomeric forms of C3d, are linked to various test protein antigens. In this study, we examined the feasibility of enhancing the adjuvant properties of human C3d further by utilizing C4b-binding protein (C4BP) to provide an oligomeric arrayed scaffold fused to the model antigen, tetanus toxin C fragment (TTCF). High molecular weight, C3d-containing oligomeric vaccines were successfully expressed, purified from mammalian cells and used to immunize groups of mice. Surprisingly, anti-TTCF antibody responses measured in these mice were poor. Subsequently we established by in vitro and in vivo analysis that, in the presence of mouse C3, human C3d does not interact with either mouse or even human complement receptor 2. These data confirm the requirement to develop murine versions of C3d based adjuvant compounds to test in mice or that mice would need to be developed that express both human C3 and human CR2 to allow the testing of human C3d based adjuvants in mouse in any capacity.


Assuntos
Linfócitos B/fisiologia , Complemento C3d/imunologia , Proteína de Ligação ao Complemento C4b/genética , Fragmentos de Peptídeos/imunologia , Toxina Tetânica/imunologia , Vacinas Sintéticas/imunologia , Adjuvantes Imunológicos , Animais , Anticorpos/sangue , Linhagem Celular , Complemento C3d/genética , Proteína de Ligação ao Complemento C4b/imunologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Fragmentos de Peptídeos/genética , Multimerização Proteica/genética , Receptores de Complemento 3d/genética , Receptores de Complemento 3d/metabolismo , Toxina Tetânica/genética , Vacinação , Vacinas Sintéticas/genética
13.
J Neuroinflammation ; 14(1): 120, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28629465

RESUMO

BACKGROUND: Natural IgM antibodies (Abs) function as innate immune sensors of injury via recognition of neoepitopes expressed on damaged cells, although how this recognition systems function following spinal cord injury (SCI) exposes various neoepitopes and their precise nature remains largely unknown. Here, we investigated the role of two natural IgM monoclonal Abs (mAbs), B4 and C2, that recognize post-ischemic neoepitopes following ischemia and reperfusion in other tissues. METHODS: Identification of post-SCI expressed neoepitopes was examined using previously characterized monoclonal Abs (B4 and C2 mAbs). The role of post-SCI neoepitopes and their recognition by natural IgM Abs in propagating secondary injury was examined in Ab-deficient Rag1-/- or wild type C57BL/6 mice using Ab reconstitution experiments and neoepitope-targeted therapeutic studies, respectively. RESULTS: Administration of B4 or C2 mAb following murine SCI increased lesion size and worsened functional outcome in otherwise protected Ab-deficient Rag1-/- mice. Injury correlated with colocalized deposition of IgM and C3d in injured spinal cords from both mAb reconstituted Rag1-/- mice and untreated wild-type mice. Depletion of peritoneal B1 B cells, a source of natural Abs, reduced circulating levels of IgM with B4 (annexin-IV) and C2 (subset of phospholipids) reactivity, reduced IgM and complement deposition in the spinal cord, and protected against SCI. We therefore investigated whether the B4 neoepitope represents a therapeutic target for complement inhibition. B4-Crry, a fusion protein consisting of a single-chain Ab derived from B4 mAb, linked to the complement inhibitor Crry, significantly protected against SCI. B4-Crry exhibited a dual function in that it inhibited both the binding of pathogenic IgM and blocked complement activation in the spinal cord. CONCLUSIONS: This study identifies important neoepitopes expressed within the spinal cord after injury. These neoepitopes are recognized by clonally specific natural IgM Abs that activate complement and drive pathology. We demonstrate that these neoepitopes represent novel targets for the therapeutic delivery of a complement inhibitor, and possibly other payload, to the injured spinal cord.


Assuntos
Autoanticorpos/metabolismo , Ativação do Complemento/fisiologia , Epitopos/metabolismo , Imunoglobulina M/metabolismo , Traumatismos da Medula Espinal/metabolismo , Animais , Autoanticorpos/imunologia , Epitopos/imunologia , Feminino , Imunoglobulina M/imunologia , Locomoção/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligação Proteica/fisiologia , Traumatismos da Medula Espinal/imunologia , Traumatismos da Medula Espinal/patologia
14.
Semin Immunol ; 28(3): 260-7, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27282113

RESUMO

Despite substantial opportunity and commercial interest in developing drugs that modulate the complement system in a broad range of non-orphan indications, several obstacles remain to be overcome. Among these issues is the biophysical nature of complement proteins, whose circulating levels are typically very high and whose turnover rates are relatively rapid, especially in the setting of chronic inflammatory conditions. This situation necessitates the use of very high levels of therapeutic compounds in order to achieve both multi-pathway and multiple effector mechanism inhibition. In addition, one must avoid infectious complications or the systemic impairment of the other important physiological functions of complement. Herein we focus on the development of a novel therapeutic strategy based on injured tissue-specific targeting of complement inhibitors using the antigen-combining domains of a small subset of natural IgM antibodies, which as endogenous antibodies specifically recognize sites of local damage across a broad range of tissues and locally activate complement C3, resulting in C3 fragment covalent fixation. Because the use of such recombinant tissue-targeting inhibitors precludes the utility of measuring systemic levels of complement biomarkers or function, since a goal of this targeting strategy is to leave those processes intact and unimpeded, we also briefly describe a new method designed to quantitatively measure using imaging modalities the inhibition of generation of fixed C3 fragments at sites of inflammation/injury. In addition to the ability to determine whether complement activation is locally constrained with the use of inhibitors, there is also a broader application of this imaging approach to inflammatory and autoimmune diseases characterized by local complement activation.


Assuntos
Inativadores do Complemento/uso terapêutico , Proteínas do Sistema Complemento/metabolismo , Inflamação/diagnóstico , Inflamação/terapia , Animais , Autoimunidade , Ativação do Complemento , Diagnóstico por Imagem , Humanos , Terapia de Alvo Molecular , Especificidade de Órgãos
15.
Kidney Int ; 88(3): 528-37, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25945405

RESUMO

Although glomerular immunoglobulin M (IgM) deposition occurs in a variety of glomerular diseases, the mechanism of deposition and its clinical significance remain controversial. Some have theorized IgM becomes passively trapped in areas of glomerulosclerosis. However, recent studies found that IgM specifically binds damaged glomeruli. Therefore, we tested whether natural IgM binds to neo-epitopes exposed after insults to the glomerulus and exacerbates disease in mice deficient in the complement regulatory protein factor H; a model of non-sclerotic and nonimmune-complex glomerular disease. Immunofluorescence microscopy demonstrated mesangial and capillary loop deposition of IgM, whereas ultrastructural analysis found IgM deposition on endothelial cells and subendothelial areas. Factor H-deficient mice lacking B cells were protected from renal damage, as evidenced by milder histologic lesions on light and electron microscopy. IgM, but not IgG, from wild-type mice bound to cultured murine mesangial cells. Furthermore, injection of purified IgM into mice lacking B cells bound within the glomeruli and induced proteinuria. A monoclonal natural IgM-recognizing phospholipids also bound to glomeruli in vivo and induced albuminuria. Thus, our results indicate specific IgM antibodies bind to glomerular epitopes and that IgM contributes to the progression of glomerular damage in this mouse model of non-sclerotic glomerular disease.


Assuntos
Ativação do Complemento , Fator H do Complemento/metabolismo , Glomerulonefrite/etiologia , Imunoglobulina M/metabolismo , Glomérulos Renais/metabolismo , Albuminúria/etiologia , Albuminúria/imunologia , Albuminúria/metabolismo , Animais , Especificidade de Anticorpos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linhagem Celular , Fator H do Complemento/deficiência , Fator H do Complemento/genética , Modelos Animais de Doenças , Progressão da Doença , Epitopos , Glomerulonefrite/genética , Glomerulonefrite/imunologia , Glomerulonefrite/metabolismo , Glomerulonefrite/patologia , Glomerulonefrite/prevenção & controle , Imunoglobulina M/genética , Imunoglobulina M/imunologia , Glomérulos Renais/imunologia , Glomérulos Renais/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Tempo
16.
Circulation ; 131(13): 1171-80, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25825397

RESUMO

BACKGROUND: Natural IgM antibodies represent a class of innate pattern recognition receptors that recognize danger-associated molecular patterns expressed on stressed or dying cells. They play important roles in tissue homeostasis by disposing of prenecrotic cells and suppressing inflammation. However, ischemic insult leads to a pathogenic level of IgM binding and complement activation, resulting in inflammation and injury. We investigate the role of self-reactive IgM in the unique setting of transplantation where the donor organ undergoes both cold and warm ischemia and global ischemic insult. METHODS AND RESULTS: By transplanting hearts from wild-type donor mice into antibody-deficient mice reconstituted with specific self-reactive IgM monoclonal antibodies, we identified neoepitopes expressed after transplantation and demonstrated a key role for IgM recognition of these epitopes in graft injury. With this information, we developed and characterized a therapeutic strategy that exploited the postischemia recognition system of natural antibodies. On the basis of neoepitope identification, we constructed an anti-annexin IV single-chain antibody (scFv) and an scFv linked to Crry, an inhibitor of C3 activation (scFv-Crry). In an allograft transplantation model in which recipients contain a full natural antibody repertoire, both constructs blocked graft IgM binding and complement activation and significantly reduced graft inflammation and injury. Furthermore, scFv-Crry specifically targeted to the transplanted heart and, unlike complement deficiency, did not affect immunity to infection, an important consideration for immunosuppressed transplant recipients. CONCLUSIONS: We identified pathophysiologically important epitopes expressed within the heart after transplantation and described a novel translatable strategy for targeted complement inhibition that has several advantages over currently available approaches.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Transplante de Coração/efeitos adversos , Imunoglobulina M/uso terapêutico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Reperfusão Miocárdica/efeitos adversos , Receptores de Complemento/uso terapêutico , Tolerância a Antígenos Próprios/imunologia , Anticorpos de Cadeia Única/uso terapêutico , Animais , Anexina A4/imunologia , Anticorpos Biespecíficos/genética , Anticorpos Biespecíficos/imunologia , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Ativação do Complemento , Epitopos/imunologia , Genes Sintéticos , Proteínas de Homeodomínio/genética , Imunoglobulina M/deficiência , Imunoglobulina M/genética , Imunoglobulina M/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/imunologia , Miocárdio/imunologia , Especificidade de Órgãos , Fosfolipídeos/imunologia , Receptores de Complemento/genética , Receptores de Complemento 3b , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/uso terapêutico , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Tolerância ao Transplante
17.
Mol Immunol ; 63(2): 479-88, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25457881

RESUMO

Although reagents are available to block mouse complement receptor type 2 and/or type 1 (CR2/CR1, CD21/CD35) function in acute or short term models of human disease, a mouse anti-rat antibody response limits their use in chronic models. We have addressed this problem by generating in Cr2−/− mice a mouse monoclonal antibody (mAb 4B2) to mouse CR2/CR1. The binding of murine mAb 4B2 to CR2/CR1 directly blocked C3dg (C3d) ligand binding. In vivo injection of mAb 4B2 induced substantial down regulation of CR2 and CR1 from the B cell surface, an effect that lasted six weeks after a single injection of 2 mg of mAb. The 4B2 mAb was studied in vivo for the capability to affect immunological responses to model antigens. Pre-injection of mAb 4B2 before immunization of C57BL/6 mice reduced the IgG1 antibody response to the T-dependent antigen sheep red blood cells (SRBC) to a level comparable to that found in Cr2−/− mice. We also used the collagen-induced arthritis (CIA) model, a CR2/CR1-dependent autoimmune disease model, and found that mice pre-injected with mAb 4B2 demonstrated substantially reduced levels of pathogenic IgG2a antibodies to both the bovine type II collagen (CII) used to induce arthritis and to endogenous mouse CII. Consistent with this result, mice pre-injected with mAb 4B2 demonstrated only very mild arthritis. This reduction in disease, together with published data in CII-immunized Cr2−/− mice, confirm both that the arthritis development depends on CR2/CR1 receptors and that mAb 4B2 can be used to induce biologically relevant receptor blockade. Thus mAb 4B2 is an excellent candidate for use in chronic murine models to determine how receptor blockage at different points modifies disease activity and autoantibody responses.


Assuntos
Anticorpos Monoclonais/imunologia , Doenças do Sistema Imunitário/imunologia , Receptores de Complemento 3b/imunologia , Receptores de Complemento 3d/imunologia , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/farmacologia , Especificidade de Anticorpos/imunologia , Antígenos/imunologia , Antígenos CD19/metabolismo , Artrite Experimental/sangue , Artrite Experimental/imunologia , Artrite Experimental/patologia , Autoanticorpos/sangue , Linfócitos B/citologia , Linfócitos B/efeitos dos fármacos , Bovinos , Morte Celular/efeitos dos fármacos , Doença Crônica , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Eritrócitos/imunologia , Feminino , Imunidade Humoral/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Imunoglobulina D/metabolismo , Camundongos Endogâmicos C57BL , Ratos , Ovinos
18.
J Neuroinflammation ; 11: 95, 2014 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-24885042

RESUMO

Complement activation at the C3 convertase level has been associated with acute neuroinflammation and secondary brain injury after severe head trauma. The present study was designed to test the hypothesis that Cr2-/- mice, which lack the receptors CR2/CD21 and CR1/CD35 for complement C3-derived activation fragments, are protected from adverse sequelae of experimental closed head injury. Adult wild-type mice and Cr2-/- mice on a C57BL/6 genetic background were subjected to focal closed head injury using a standardized weight-drop device. Head-injured Cr2-/- mice showed significantly improved neurological outcomes for up to 72 hours after trauma and a significantly decreased post-injury mortality when compared to wild-type mice. In addition, the Cr2-/- genotype was associated with a decreased extent of neuronal cell death at seven days post-injury. Western blot analysis revealed that complement C3 levels were reduced in the injured brain hemispheres of Cr2-/- mice, whereas plasma C3 levels remained unchanged, compared to wild-type mice. Finally, head-injured Cr2-/- had an attenuated extent of post-injury C3 tissue deposition, decreased astrocytosis and microglial activation, and attenuated immunoglobulin M deposition in injured brains compared to wild-type mice. Targeting of these receptors for complement C3 fragments (CR2/CR1) may represent a promising future approach for therapeutic immunomodulation after traumatic brain injury.


Assuntos
Encéfalo/metabolismo , Traumatismos Craniocerebrais/patologia , Receptores de Complemento 3b/deficiência , Receptores de Complemento 3d/deficiência , Animais , Astrócitos/metabolismo , Encéfalo/patologia , Complemento C3/metabolismo , Traumatismos Craniocerebrais/sangue , Traumatismos Craniocerebrais/tratamento farmacológico , Modelos Animais de Doenças , Feminino , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Imunoglobulina M/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Fosfopiruvato Hidratase/sangue , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores de Complemento 3d/genética , Receptores de Complemento 3d/imunologia , Receptor fas/metabolismo
19.
J Am Soc Nephrol ; 24(7): 1063-72, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23641055

RESUMO

Renal transplant recipients who experience delayed graft function have increased risks of rejection and long-term graft failure. Ischemic damage is the most common cause of delayed graft function, and although it is known that tissue inflammation accompanies renal ischemia, it is unknown whether renal ischemia affects the production of antibodies by B lymphocytes, which may lead to chronic humoral rejection and allograft failure. Here, mice immunized with a foreign antigen 24-96 hours after renal ischemia-reperfusion injury developed increased levels of antigen-specific IgG1 compared with sham-treated controls. This amplified IgG1 response did not follow unilateral ischemia, and it did not occur in response to a T-independent antigen. To test whether innate immune activation in the kidney after ischemia affects the systemic immune response to antigen, we repeated the immunization experiment using mice deficient in factor B that lack a functional alternative pathway of complement. Renal ischemia-reperfusion injury did not cause amplification of the antigen-specific antibodies in these mice, suggesting that the increased immune response requires a functional alternative pathway of complement. Taken together, these data suggest that ischemic renal injury leads to a rise in antibody production, which may be harmful to renal allografts, possibly explaining a mechanism underlying the link between delayed graft function and long-term allograft failure.


Assuntos
Rejeição de Enxerto/imunologia , Imunidade Humoral/imunologia , Nefropatias/imunologia , Transplante de Rim/imunologia , Rim/imunologia , Traumatismo por Reperfusão/imunologia , Transplante Homólogo/imunologia , Animais , Nefropatias/fisiopatologia , Nefropatias/cirurgia , Camundongos , Traumatismo por Reperfusão/fisiopatologia
20.
J Clin Invest ; 123(5): 2218-30, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23619360

RESUMO

During complement activation the C3 protein is cleaved, and C3 activation fragments are covalently fixed to tissues. Tissue-bound C3 fragments are a durable biomarker of tissue inflammation, and these fragments have been exploited as addressable binding ligands for targeted therapeutics and diagnostic agents. We have generated cross-reactive murine monoclonal antibodies against human and mouse C3d, the final C3 degradation fragment generated during complement activation. We developed 3 monoclonal antibodies (3d8b, 3d9a, and 3d29) that preferentially bind to the iC3b, C3dg, and C3d fragments in solution, but do not bind to intact C3 or C3b. The same 3 clones also bind to tissue-bound C3 activation fragments when injected systemically. Using mouse models of renal and ocular disease, we confirmed that, following systemic injection, the antibodies accumulated at sites of C3 fragment deposition within the glomerulus, the renal tubulointerstitium, and the posterior pole of the eye. To detect antibodies bound within the eye, we used optical imaging and observed accumulation of the antibodies within retinal lesions in a model of choroidal neovascularization (CNV). Our results demonstrate that imaging methods that use these antibodies may provide a sensitive means of detecting and monitoring complement activation-associated tissue inflammation.


Assuntos
Anticorpos Monoclonais Murinos/imunologia , Ativação do Complemento , Complemento C3d/imunologia , Animais , Biomarcadores/metabolismo , Neovascularização de Coroide/metabolismo , Convertases de Complemento C3-C5/imunologia , Complemento C3d/fisiologia , Epitopos/imunologia , Humanos , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Proteínas Recombinantes/imunologia , Baço/citologia , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...