Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Math Phys Eng Sci ; 471(2179): 20150059, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26345080

RESUMO

In this paper, we formulate and analyse an elementary model for autoignition of cylindrical laminar jets of fuel injected into an oxidizing ambient at rest. This study is motivated by renewed interest in analysis of hydrothermal flames for which such configuration is common. As a result of our analysis, we obtain a sharp characterization of the autoignition position in terms of the principal physical and geometrical parameters of the problem.

2.
Appl Spectrosc ; 68(6): 649-56, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25014720

RESUMO

The analytical utility of a micro-hollow cathode glow discharge plasma for detection of varied hydrocarbons was tested using acetone, ethanol, heptane, nitrobenzene, and toluene. Differences in fragmentation pathways, reflecting parent compound molecular structure, led to differences in optical emission patterns that can then potentially serve as signatures for the species of interest. Spectral simulations were performed emphasizing the CH (A(2)Δ-X(2)Π), CH (C(2)Σ-X(2)Π), and OH (A(2)Σ(+)-X(2)Π) electronic systems. The analytical utility of selected emission lines is demonstrated by a linear relationship between optical emission spectroscopy and parent compound concentration over a wide range, with detection limits extending down to parts per billion (ppb) levels.

3.
Sensors (Basel) ; 9(10): 7866-902, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-22408484

RESUMO

A comparison is made between SnO(2), ZnO, and TiO(2) single-crystal nanowires and SnO(2) polycrystalline nanofibers for gas sensing. Both nanostructures possess a one-dimensional morphology. Different synthesis methods are used to produce these materials: thermal evaporation-condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed. Practical issues associated with harvesting, purification, and integration of these materials into sensing devices are detailed. For comparison to the nascent form, these sensing materials are surface coated with Pd and Pt nanoparticles. Gas sensing tests, with respect to H(2), are conducted at ambient and elevated temperatures. Comparative normalized responses and time constants for the catalyst and noncatalyst systems provide a basis for identification of the superior metal-oxide nanostructure and catalyst combination. With temperature-dependent data, Arrhenius analyses are made to determine activation energies for the catalyst-assisted systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA