Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Biochim Biophys Acta Rev Cancer ; 1879(3): 189106, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38701936

RESUMO

Cervical cancer remains a significant global health burden, necessitating innovative approaches for improved diagnostics and personalized treatment strategies. Precision medicine has emerged as a promising paradigm, leveraging biomarkers and molecular targets to tailor therapy to individual patients. This review explores the landscape of emerging biomarkers and molecular targets in cervical cancer, highlighting their potential implications for precision medicine. By integrating these biomarkers into comprehensive diagnostic algorithms, clinicians can identify high-risk patients at an earlier stage, enabling timely intervention and improved patient outcomes. Furthermore, the identification of specific molecular targets has paved the way for the development of targeted therapies aimed at disrupting key pathways implicated in cervical carcinogenesis. In conclusion, the evolving landscape of biomarkers and molecular targets presents exciting opportunities for advancing precision medicine in cervical cancer. By harnessing these insights, clinicians can optimize treatment selection, enhance patient outcomes, and ultimately transform the management of this devastating disease.


Assuntos
Biomarcadores Tumorais , Terapia de Alvo Molecular , Medicina de Precisão , Neoplasias do Colo do Útero , Humanos , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/diagnóstico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Feminino , Terapia de Alvo Molecular/métodos
2.
Mitochondrion ; 76: 101874, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38514017

RESUMO

Since the discovery of membrane contact sites between ER and mitochondria called mitochondria-associated membranes (MAMs), several pieces of evidence identified their role in the regulation of different cellular processes such as Ca2+ signalling, mitochondrial transport, and dynamics, ER stress, inflammation, glucose homeostasis, and autophagy. The integrity of these membranes was found to be essential for the maintenance of these cellular functions. Accumulating pieces of evidence suggest that MAMs serve as a platform for autophagosome formation. However, the alteration within MAMs structure is associated with the progression of neurodegenerative diseases. Dysregulated autophagy is a hallmark of neurodegeneration. Here, in this review, we highlight the present knowledge on MAMs, their structural composition, and their roles in different cellular functions. We also discuss the association of MAMs proteins with impaired autophagy and their involvement in the progression of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease.


Assuntos
Autofagia , Membranas Mitocondriais , Doenças Neurodegenerativas , Autofagia/fisiologia , Humanos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Membranas Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Animais , Proteínas Mitocondriais/metabolismo , Proteínas de Membrana/metabolismo , Membranas Associadas à Mitocôndria
3.
iScience ; 27(3): 109308, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38482503

RESUMO

Organisms as well as cancer cells are adept at adapting to changes in the environment in which they find themselves, by actively adjusting their phenotype. Phenotypic plasticity is a quantitative trait that confers a fitness advantage to the organism by tailoring its phenotype to environmental circumstances. While it is generally held that new traits arise solely from genetic factors, emerging evidence indicates that phenotypic plasticity also plays a critical role both in cancer and evolution. Thus, understanding the mechanisms that underlie phenotypic plasticity can not only provide new insights into organismal evolution and the origin of novelty but can also result in novel strategies and therapeutics to treat cancer.

4.
Biomolecules ; 13(11)2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-38002269

RESUMO

Several studies in the last few years have determined that, in contrast to the prevailing dogma that drug resistance is simply due to Darwinian evolution-the selection of mutant clones in response to drug treatment-non-genetic changes can also lead to drug resistance whereby tolerant, reversible phenotypes are eventually relinquished by resistant, irreversible phenotypes. Here, using KRAS as a paradigm, we illustrate how this nexus between genetic and non-genetic mechanisms enables cancer cells to evade the harmful effects of drug treatment. We discuss how the conformational dynamics of the KRAS molecule, that includes intrinsically disordered regions, is influenced by the binding of the targeted therapies contributing to conformational noise and how this noise impacts the interaction of KRAS with partner proteins to rewire the protein interaction network. Thus, in response to drug treatment, reversible drug-tolerant phenotypes emerge via non-genetic mechanisms that eventually enable the emergence of irreversible resistant clones via genetic mutations. Furthermore, we also discuss the recent data demonstrating how combination therapy can help alleviate KRAS drug resistance in lung cancer, and how new treatment strategies based on evolutionary principles may help minimize or even preclude the emergence of drug resistance.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Mutação
5.
Biochim Biophys Acta Rev Cancer ; 1878(6): 189026, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37980945

RESUMO

Gynecological cancers including breast, cervical, ovarian, uterine, and vaginal, pose the greatest threat to world health, with early identification being crucial to patient outcomes and survival rates. The application of machine learning (ML) and artificial intelligence (AI) approaches to the study of gynecological cancer has shown potential to revolutionize cancer detection and diagnosis. The current review outlines the significant advancements, obstacles, and prospects brought about by AI and ML technologies in the timely identification and accurate diagnosis of different types of gynecological cancers. The AI-powered technologies can use genomic data to discover genetic alterations and biomarkers linked to a particular form of gynecologic cancer, assisting in the creation of targeted treatments. Furthermore, it has been shown that the potential benefits of AI and ML technologies in gynecologic tumors can greatly increase the accuracy and efficacy of cancer diagnosis, reduce diagnostic delays, and possibly eliminate the need for needless invasive operations. In conclusion, the review focused on the integrative part of AI and ML based tools and techniques in the early detection and exclusion of various cancer types; together with a collaborative coordination between research clinicians, data scientists, and regulatory authorities, which is suggested to realize the full potential of AI and ML in gynecologic cancer care.


Assuntos
Inteligência Artificial , Neoplasias dos Genitais Femininos , Feminino , Humanos , Aprendizado de Máquina , Neoplasias dos Genitais Femininos/diagnóstico , Neoplasias dos Genitais Femininos/genética , Mama , Genômica
6.
Biochem Pharmacol ; 217: 115847, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37804871

RESUMO

Ovarian cancer (OC) is the most prevalent and deadly cancer of the female reproductive system. Women will continue to be impacted by OC-related morbidity and mortality. Despite the fact that chemotherapy with cisplatin is the main component as the first-line anticancer treatment for OC, chemoresistance and unfavorable side effects are important obstacles to effective treatment. Targets for effective cancer therapy are required for cancer cells but not for non-malignant cells because they are expressed differently in cancer cells compared to normal cells. Targets for cancer therapy should preferably be components that already exist in biochemical and signalling frameworks and that significantly contribute to the development of cancer or regulate the response to therapy. RLIP is an important mercapturic acid pathway transporter that is crucial for survival and therapy resistance in cancers, therefore, we examined the role of RLIP in regulating essential signalling proteins involved in relaying the inputs from upstream survival pathways and mechanisms contributing to chemo-radiotherapy resistance in OC. The findings of our research offer insight into a novel anticancer effect of RLIP depletion/inhibition on OC and might open up new therapeutic avenues for OC therapy.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Xenoenxertos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Transdução de Sinais , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos
7.
Sci Adv ; 9(41): eade3816, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37831779

RESUMO

Inherent or acquired resistance to sotorasib poses a substantialt challenge for NSCLC treatment. Here, we demonstrate that acquired resistance to sotorasib in isogenic cells correlated with increased expression of integrin ß4 (ITGB4), a component of the focal adhesion complex. Silencing ITGB4 in tolerant cells improved sotorasib sensitivity, while overexpressing ITGB4 enhanced tolerance to sotorasib by supporting AKT-mTOR bypass signaling. Chronic treatment with sotorasib induced WNT expression and activated the WNT/ß-catenin signaling pathway. Thus, silencing both ITGB4 and ß-catenin significantly improved sotorasib sensitivity in tolerant, acquired, and inherently resistant cells. In addition, the proteasome inhibitor carfilzomib (CFZ) exhibited synergism with sotorasib by down-regulating ITGB4 and ß-catenin expression. Furthermore, adagrasib phenocopies the combination effect of sotorasib and CFZ by suppressing KRAS activity and inhibiting cell cycle progression in inherently resistant cells. Overall, our findings unveil previously unrecognized nongenetic mechanisms underlying resistance to sotorasib and propose a promising treatment strategy to overcome resistance.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Humanos , Antivirais , beta Catenina/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Resistencia a Medicamentos Antineoplásicos/genética
8.
iScience ; 26(8): 107302, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37554452

RESUMO

This study investigates the role of integrin ß4 (ITGB4) and stemness-associated factor SOX2 in platinum resistance in lung squamous cell carcinoma (LUSC). The expression of SOX2 and ITGB4 is found to be high in all LUSC subtypes, but the impact of ITGB4 expression on overall patient survival varies by subtype. Cancer stem cells (CSCs) isolated from LUSC patients were found to be resistant to cisplatin, but knocking down ITGB4 or SOX2 sensitized them to cisplatin. Carfilzomib (CFZ) synergized with cisplatin and suppressed CSC growth by inhibiting ITGB4 and SOX2 expression. Additionally, CFZ was found to inhibit SOX2 expression epigenetically by inhibiting histone acetylation at the SOX2 promoter site. CFZ also suppressed the growth of SOX2-dependent small cell lung cancer cells in vitro and in vivo. The study highlights the unique function of CFZ as a transcriptional suppressor of SOX2, independent of its proteasome inhibitory function.

9.
J Clin Med ; 12(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37568299

RESUMO

Our first Special Issue of the Journal of Clinical Medicine, entitled 'Integrating Clinical and Translational Research Networks-Building Team Medicine,' highlighted the collective experience of the City of Hope and was a tremendous success [...].

10.
iScience ; 26(7): 107109, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37408690

RESUMO

Phenotypic plasticity is the ability of individual genotypes to produce different phenotypes in response to environmental perturbations. We previously postulated how conformational noise emanating from conformational dynamics of intrinsically disordered proteins (IDPs) which is distinct from transcriptional noise, can contribute to phenotypic switching by rewiring the cellular protein interaction network. Since most transcription factors are IDPs, we posited that conformational noise is an integral component of transcriptional noise implying that IDPs may amplify total noise in the system either stochastically or in response to environmental changes. Here, we review progress in elucidating the details of the hypothesis. We highlight empirical evidence supporting the hypothesis, discuss conceptual advances that underscore its fundamental importance and implications, and identify areas for future investigations.

11.
J Clin Med ; 12(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37445570

RESUMO

In recent decades, cancer biology and medicine have ushered in a new age of precision medicine through high-throughput approaches that led to the development of novel targeted therapies and immunotherapies for different cancers. The availability of multifaceted high-throughput omics data has revealed that cancer, beyond its genomic heterogeneity, is a complex system of microenvironments, sub-clonal tumor populations, and a variety of other cell types that impinge on the genetic and non-genetic mechanisms underlying the disease. Thus, a systems approach to cancer biology has become instrumental in identifying the key components of tumor initiation, progression, and the eventual emergence of drug resistance. Through the union of clinical medicine and basic sciences, there has been a revolution in the development and approval of cancer therapeutic drug options including tyrosine kinase inhibitors, antibody-drug conjugates, and immunotherapy. This 'Team Medicine' approach within the cancer systems biology framework can be further improved upon through the development of high-throughput clinical trial models that utilize machine learning models, rapid sample processing to grow patient tumor cell cultures, test multiple therapeutic options and assign appropriate therapy to individual patients quickly and efficiently. The integration of systems biology into the clinical network would allow for rapid advances in personalized medicine that are often hindered by a lack of drug development and drug testing.

12.
Semin Radiat Oncol ; 33(3): 279-286, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37331782

RESUMO

Patient-derived cancer models have been used for decades to improve our understanding of cancer and test anticancer treatments. Advances in radiation delivery have made these models more attractive for studying radiation sensitizers and understanding an individual patient's radiation sensitivity. Advances in the use of patient-derived cancer models lead to a more clinically relevant outcome, although many questions remain regarding the optimal use of patient-derived xenografts and patient-derived spheroid cultures. The use of patient-derived cancer models as personalized predictive avatars through mouse and zebrafish models is discussed, and the advantages and disadvantages of patient-derived spheroids are reviewed. In addition, the use of large repositories of patient-derived models to develop predictive algorithms to guide treatment selection is discussed. Finally, we review methods for establishing patient-derived models and identify key factors that influence their use as both avatars and models of cancer biology.


Assuntos
Neoplasias , Peixe-Zebra , Humanos , Camundongos , Animais , Neoplasias/radioterapia , Modelos Animais de Doenças , Tolerância a Radiação
13.
Cancers (Basel) ; 15(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37296923

RESUMO

Animal models have been utilized for decades to investigate the causes of human diseases and provide platforms for testing novel therapies. Indeed, breakthrough advances in genetically engineered mouse (GEM) models and xenograft transplantation technologies have dramatically benefited in elucidating the mechanisms underlying the pathogenesis of multiple diseases, including cancer. The currently available GEM models have been employed to assess specific genetic changes that underlay many features of carcinogenesis, including variations in tumor cell proliferation, apoptosis, invasion, metastasis, angiogenesis, and drug resistance. In addition, mice models render it easier to locate tumor biomarkers for the recognition, prognosis, and surveillance of cancer progression and recurrence. Furthermore, the patient-derived xenograft (PDX) model, which involves the direct surgical transfer of fresh human tumor samples to immunodeficient mice, has contributed significantly to advancing the field of drug discovery and therapeutics. Here, we provide a synopsis of mouse and zebrafish models used in cancer research as well as an interdisciplinary 'Team Medicine' approach that has not only accelerated our understanding of varied aspects of carcinogenesis but has also been instrumental in developing novel therapeutic strategies.

14.
Biomolecules ; 13(6)2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37371595

RESUMO

Until the late 1990s, we believed that protein function required a unique, well-defined 3D structure encrypted in the amino acid sequence [...].


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/química , Dobramento de Proteína , Conformação Proteica , Modelos Moleculares , Sequência de Aminoácidos
15.
Cell Mol Neurobiol ; 43(7): 3479-3495, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37193907

RESUMO

Repeated mild traumatic brain injuries (rMTBI) affect mitochondrial homeostasis in the brain. However, mechanisms of long-lasting neurobehavioral effects of rMTBI are largely unknown. Mitofusin 2 (Mfn2) is a critical component of tethering complexes in mitochondria-associated membranes (MAMs) and thereby plays a pivotal role in mitochondrial functions. Herein, we investigated the implications of DNA methylation in the Mfn2 gene regulation, and its consequences on mitochondrial dysfunction in the hippocampus after rMTBI. rMTBI dramatically reduced the mitochondrial mass, which was concomitant with decrease in Mfn2 mRNA and protein levels. DNA hypermethylation at the Mfn2 gene promoter was observed post 30 days of rMTBI. The treatment of 5-Azacytidine, a pan DNA methyltransferase inhibitor, normalized DNA methylation levels at Mfn2 promoter, which further resulted into restoration of Mfn2 function. The normalization of Mfn2 function was well correlated with recovery in memory deficits in rMTBI-exposed rats. Since, glutamate excitotoxicity serves as a primary insult after TBI, we employed in vitro model of glutamate excitotoxicity in human neuronal cell line SH-SY5Y to investigate the causal epigenetic mechanisms of Mfn2 gene regulation. The glutamate excitotoxicity reduced Mfn2 levels via DNA hypermethylation at Mfn2 promoter. Loss of Mfn2 caused significant surge in cellular and mitochondrial ROS levels with lowered mitochondrial membrane potential in cultured SH-SY5Y cells. Like rMTBI, these consequences of glutamate excitotoxicity were also prevented by 5-AzaC pre-treatment. Therefore, DNA methylation serves as a vital epigenetic mechanism involved in Mfn2 expression in the brain; and this Mfn2 gene regulation may play a pivotal role in rMTBI-induced persistent cognitive deficits. Closed head weight drop injury method was employed to induce repeated mild traumatic brain (rMTBI) in jury in adult, male Wistar rats. rMTBI causes hyper DNA methylation at the Mfn2 promoter and lowers the Mfn2 expression triggering mitochondrial dysfunction. However, the treatment of 5-azacytidine normalizes DNA methylation at the Mfn2 promoter and restores mitochondrial function.


Assuntos
Lesões Encefálicas Traumáticas , Neuroblastoma , Animais , Masculino , Ratos , Azacitidina/farmacologia , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/metabolismo , DNA/metabolismo , Metilação de DNA , Glutamatos/metabolismo , Transtornos da Memória/etiologia , Mitocôndrias/metabolismo , Ratos Wistar
16.
Mitochondrion ; 69: 116-129, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36764501

RESUMO

Mitochondria are highly dynamic organelles known to play role in the regulation of several cellular biological processes. However, their dynamics such as number, shape, and biological functions are regulated by mitochondrial fusion and fission process. The balance between the fusion and fission process is most important for the maintenance of mitochondrial structure as well as cellular functions. The alterations within mitochondrial dynamic processes were found to be associated with the progression of neurodegenerative diseases. In recent years, mitofusin-2 (Mfn2), a GTPase has emerged as a multifunctional protein which not only is found to regulate the mitochondrial fusion-fission process but also known to regulate several cellular functions such as mitochondrial metabolism, cellular biogenesis, signalling, and apoptosis via maintaining the ER-mitochondria contact sites. In this review, we summarize the current knowledge of the structural and functional properties of the Mfn2, its transcriptional regulation and their roles in several cellular functions with a focus on current advances in the pathogenesis of neurodegenerative diseases.


Assuntos
GTP Fosfo-Hidrolases , Mitocôndrias , Proteínas Mitocondriais , Doenças Neurodegenerativas , Humanos , Apoptose , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/fisiologia , Proteínas Mitocondriais/metabolismo , Doenças Neurodegenerativas/metabolismo
17.
Trends Cancer ; 9(1): 42-54, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36751115

RESUMO

Novel inhibitors targeting Kirsten rat sarcoma virus homolog (KRAS) KRASG12C in various cancers have shown good initial efficacy, but therapy-related drug resistance eventually occurs in most patients. It has become apparent that cancer cells not only rely on novel mutations that provide escape mechanisms, but about half of them become resistant in the absence of apparent genetic mutations. Redundancies within the KRAS signaling pathways and cross-talk between these pathways - as well as other canonical cancer-driving mechanisms - not only provide challenges but also present opportunities for drug development and targeted approaches. We discuss the challenges for the duality of KRAS inhibitor drug resistance with an additional focus on nongenetic mechanisms and the potential for patient-centered combination treatments.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Reações Cruzadas , Oncologia , Medicina de Precisão , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos
18.
Trends Cancer ; 9(3): 185-187, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36635119

RESUMO

The dogma that cancer is a genetic disease is being questioned. Recent findings suggest that genetic/nongenetic duality is necessary for cancer progression. A think tank organized by the Shraman Foundation's Institute for Theoretical Biology compiled key challenges and opportunities that theoreticians, experimentalists, and clinicians can explore from a systems biology perspective to provide a better understanding of the disease as well as help discover new treatment options and therapeutic strategies.


Assuntos
Neoplasias , Biologia de Sistemas , Humanos , Neoplasias/genética
19.
Biomolecules ; 13(1)2023 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-36671509

RESUMO

Intense study of intrinsically disordered proteins (IDPs) did not begin in earnest until the late 1990s when a few groups, working independently, convinced the community that these 'weird' proteins could have important functions. Over the past two decades, it has become clear that IDPs play critical roles in a multitude of biological phenomena with prominent examples including coordination in signaling hubs, enabling gene regulation, and regulating ion channels, just to name a few. One contributing factor that delayed appreciation of IDP functional significance is the experimental difficulty in characterizing their dynamic conformations. The combined application of multiple methods, termed integrative structural biology, has emerged as an essential approach to understanding IDP phenomena. Here, we review some of the recent applications of the integrative structural biology philosophy to study IDPs.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/química , Transdução de Sinais , Biologia , Conformação Proteica
20.
Mol Cancer ; 22(1): 1, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36597126

RESUMO

BACKGROUND: Small cell lung cancer (SCLC) is an aggressive lung cancer subtype that is associated with high recurrence and poor prognosis. Due to lack of potential drug targets, SCLC patients have few therapeutic options. MicroRNAs (miRNAs) provide an interesting repertoire of therapeutic molecules; however, the identification of miRNAs regulating SCLC growth and metastasis and their precise regulatory mechanisms are not well understood. METHODS: To identify novel miRNAs regulating SCLC, we performed miRNA-sequencing from donor/patient serum samples and analyzed the bulk RNA-sequencing data from the tumors of SCLC patients. Further, we developed a nanotechnology-based, highly sensitive method to detect microRNA-1 (miR-1, identified miRNA) in patient serum samples and SCLC cell lines. To assess the therapeutic potential of miR-1, we developed various in vitro models, including miR-1 sponge (miR-1Zip) and DOX-On-miR-1 (Tet-ON) inducible stable overexpression systems. Mouse models derived from intracardiac injection of SCLC cells (miR-1Zip and DOX-On-miR-1) were established to delineate the role of miR-1 in SCLC metastasis. In situ hybridization and immunohistochemistry were used to analyze the expression of miR-1 and target proteins (mouse and human tumor specimens), respectively. Dual-luciferase assay was used to validate the target of miR-1, and chromatin immunoprecipitation assay was used to investigate the protein-gene interactions. RESULTS: A consistent downregulation of miR-1 was observed in tumor tissues and serum samples of SCLC patients compared to their matched normal controls, and these results were recapitulated in SCLC cell lines. Gain of function studies of miR-1 in SCLC cell lines showed decreased cell growth and oncogenic signaling, whereas loss of function studies of miR-1 rescued this effect. Intracardiac injection of gain of function of miR-1 SCLC cell lines in the mouse models showed a decrease in distant organ metastasis, whereas loss of function of miR-1 potentiated growth and metastasis. Mechanistic studies revealed that CXCR4 is a direct target of miR-1 in SCLC. Using unbiased transcriptomic analysis, we identified CXCR4/FOXM1/RRM2 as a unique axis that regulates SCLC growth and metastasis. Our results further showed that FOXM1 directly binds to the RRM2 promoter and regulates its activity in SCLC. CONCLUSIONS: Our findings revealed that miR-1 is a critical regulator for decreasing SCLC growth and metastasis. It targets the CXCR4/FOXM1/RRM2 axis and has a high potential for the development of novel SCLC therapies. MicroRNA-1 (miR-1) downregulation in the tumor tissues and serum samples of SCLC patients is an important hallmark of tumor growth and metastasis. The introduction of miR-1 in SCLC cell lines decreases cell growth and metastasis. Mechanistically, miR-1 directly targets CXCR4, which further prevents FOXM1 binding to the RRM2 promoter and decreases SCLC growth and metastasis.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Carcinoma de Pequenas Células do Pulmão , Humanos , Animais , Camundongos , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Neoplasias Pulmonares/patologia , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Proteína Forkhead Box M1/genética , Receptores CXCR4/genética , Receptores CXCR4/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...