Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Expert Opin Drug Deliv ; 20(3): 395-412, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36803111

RESUMO

INTRODUCTION: Mucoadhesive drug delivery systems (MDDS) are specifically designed to interact and bind to the mucosal layer for localized, prolonged, and/or targeted drug delivery. Over the past 4 decades, different sites have been explored for mucoadhesion including the nasal, oral, and vaginal cavities, the gastrointestinal tract and ocular tissues. AREAS COVERED: The present review aims to provide a comprehensive understanding of different aspects of MDDS development. Part I focuses on the anatomical and biological aspects of mucoadhesion, which include a detailed elucidation of the structure and anatomy of the mucosa, the properties of mucin, the different theories of mucoadhesion and evaluation techniques. EXPERT OPINION: The mucosal layer presents a unique opportunity for effective localization as well as systemic drug delivery via MDDS. Formulation of MDDS requires a thorough understanding of the anatomy of mucus tissue, the rate of mucus secretion and turnover, and the physicochemical properties of mucus. Further, the moisture content and the hydration of polymers are crucial for interaction with mucus. A confluence of different theories used to explain the mechanism of mucoadhesion is useful for understanding the mucoadhesion of different MDDS and their evaluation is subject to factors, such as the site of administration, type of dosage form, and duration of action. [Figure: see text].


Assuntos
Sistemas de Liberação de Medicamentos , Mucosa , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos/métodos , Mucosa/metabolismo , Polímeros/química , Fenômenos Químicos
2.
Expert Opin Drug Deliv ; 20(3): 413-434, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36803264

RESUMO

INTRODUCTION: Mucoadhesive drug delivery systems (MDDS) are specifically designed to interact and bind to the mucosal layer of the epithelium for localized, prolonged, and/or targeted drug delivery. Over the past 4 decades, several dosage forms have been developed for localized as well as systemic drug delivery at different anatomical sites. AREAS COVERED: The objective of this review is to provide a detailed understanding of the different aspects of MDDS. Part II describes the origin and evolution of MDDS, followed by a discussion of the properties of mucoadhesive polymers. Finally, a synopsis of the different commercial aspects of MDDS, recent advances in the development of MDDS for biologics and COVID-19 as well as future perspectives are provided. EXPERT OPINION: A review of the past reports and recent advances reveal MDDS as highly versatile, biocompatible, and noninvasive drug delivery systems. The rise in the number of approved biologics, the introduction of newer highly efficient thiomers, as well as the recent advances in the field of nanotechnology have led to several excellent applications of MDDS, which are predicted to grow significantly in the future.


Assuntos
COVID-19 , Humanos , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos , Mucosa/metabolismo , Nanotecnologia
3.
AAPS PharmSciTech ; 20(7): 257, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31332640

RESUMO

Transcutaneous immunization using a microneedle device presents a promising alternative to syringe-based injection of vaccines. The aim of this study was to investigate the effective immune response elicited after application of tetanus toxoid antigen-loaded dissolvable microneedles (TT-MN) in mice model. Dissolvable microneedles were prepared using 20% w/v of polyvinyl alcohol and polyvinyl pyrrolidone polymer mixture by micromolding technique. TT-MN were prepared by addition of tetanus toxoid to polymer mixture before casting microneedles. TT-MN were characterized using texture analyzer, stereomicroscope, and scanning electron microscope. Tetanus toxoid loading was found to be 77 ± 2 µg per microneedle array. Confocal microscopic analysis showed that the microneedles penetrated to a depth of 130 µm inside mouse skin. Complete dissolution of microneedles was achieved within 1 h after insertion in skin. Immunization studies in Swiss albino mice demonstrated significantly (p < 0.001) greater IgG, IgG1, and IgG2a antibody titers for TT-MN and intramuscular injection groups compared with naïve control. Splenocyte proliferation assay confirmed effective re-stimulation on exposure to tetanus toxoid in microneedle treatment groups. Taken together, TT-MN can be developed as minimally invasive system for transcutaneous delivery of tetanus toxoid antigen.


Assuntos
Antígenos/administração & dosagem , Imunização/métodos , Agulhas , Toxoide Tetânico/administração & dosagem , Animais , Fosfatos de Cálcio/química , Feminino , Injeções Subcutâneas , Camundongos , Polímeros/química , Álcool de Polivinil/química , Solubilidade , Toxoide Tetânico/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...