Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proteomics Clin Appl ; 12(3): e1700086, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29283216

RESUMO

PURPOSE: Poor molecular characterization of idiopathic pulmonary fibrosis (IPF) has led to insufficient understanding of the pathogenesis of the disease, resulting in lack of effective therapies and poor prognosis. Particularly, the role of lipid imbalance due to impaired lipid metabolism in the pathogenesis of IPF has been poorly studied. EXPERIMENTAL DESIGN: The authors have used shotgun lipidomics in a bleomycin (BLM) mouse model of pulmonary fibrosis with vascular endothelial growth factor (VEGF)-inhibitor CBO-P11 as a therapeutic measure, to identify a comprehensive set of lipids that contribute to the pathogenesis of pulmonary fibrosis. RESULTS: The authors report that attenuation of BLM-induced fibrotic response with CBO-P11 cotreatment is accompanied by a decrease in total lipid content and specific downregulation of lipids, which are upregulated in response to BLM treatment. CONCLUSION AND CLINICAL RELEVANCE: Dysregulated lipids identified in this study hold the potential of being future biomarkers for IPF.


Assuntos
Bleomicina/efeitos adversos , Biologia Computacional , Fatores de Crescimento Endotelial/farmacologia , Metabolismo dos Lipídeos , Peptídeos Cíclicos/farmacologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Fatores de Crescimento Endotelial/uso terapêutico , Ácidos Graxos/biossíntese , Metabolismo dos Lipídeos/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos Cíclicos/uso terapêutico , Fosfolipídeos/metabolismo , Fibrose Pulmonar/tratamento farmacológico , Regulação para Cima/efeitos dos fármacos
2.
Tumour Biol ; 39(6): 1010428317705331, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28618929

RESUMO

While there are targeted treatments for triple positive breast cancers, lack of specific biomarkers for triple-negative breast cancers (TNBC) has hindered the development of therapies for this subset of cancers. In this study, we evaluated the anticancer properties of cardiac glycoside Digitoxin (Dtx) and its synthetic analog MonoD on breast cancer cell lines MCF-7 (estrogen receptor-positive breast cancer) and MDA-MB-468 (triple-negative breast cancer). Both cardiac glycosides, at concentrations within the therapeutic range, increased the fraction of cells in the G0/G1 phase of the cell cycle, decreased viability, and inhibited the migration of MCF-7 and MDA-MB-468 cells. Both cardiac glycosides increased production of superoxide and induced apoptosis in both cell types. Reduced protein levels of nuclear factor kappa B and IkappaB kinase-beta were found in cardiac glycoside-treated cells, indicating that the cellular effects of these compounds are mediated via nuclear factor kappa B pathway. This study demonstrates the cytotoxic potential of digitoxin, and more importantly its synthetic analog MonoD, in the treatment of triple-positive breast cancer and more importantly the aggressive triple-negative breast cancer. Collectively, this study provides a basis for the reevaluation of cardiac glycosides in the treatment of breast cancer and more importantly reveals their potential in the treatment of triple-negative breast cancers.


Assuntos
Digitoxina/administração & dosagem , Receptores de Estrogênio/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Carcinogênese/genética , Glicosídeos Cardíacos/genética , Ciclo Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Digitoxina/análogos & derivados , Feminino , Humanos , Células MCF-7 , Camundongos , NF-kappa B/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Cell Physiol ; 231(4): 817-28, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26264876

RESUMO

We have synthesized a novel derivative of Digitoxin, termed "MonoD", which demonstrates cytotoxic effects in lung cancer cells with much higher potency as compared to Digitoxin. Our data show that within 1 h of MonoD treatment, H460 cells showed increased oxidative stress, increased formation of autophagic vacuoles, and increased expression of pro-autophagic markers Beclin-1 and LC3-II. Cells pretreated with MnTBAP, a superoxide scavenger not only lowered superoxide production, but also had lower levels of LC3-II and Beclin-1. Prolonged treatment with MonoD-induced apoptosis in lung cancer cells. We investigated MonoD-dependent regulation of Akt and Bcl2, proteins that are known regulators of both autophagy and apoptosis. Molecular and pharmacologic inhibitors of Bcl2 and Akt, when combined with MonoD, led to higher expression of LC3-II and Beclin-1 as compared to MonoD alone, suggesting a repressive effect for these proteins in MonoD-dependent autophagy. Pretreatment of cells with an autophagy inhibitor repressed the apoptotic potential of MonoD, confirming that early autophagic flux is important to drive apoptosis. Therapeutic entities such as MonoD that target multiple pathways such as autophagy and apoptosis may prove advantageous over current therapies that have unimodal basis for action and may drive sustained tumor regression, which is highly desirable. J. Cell. Physiol. 231: 817-828, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Digitoxina/análogos & derivados , Digitoxina/farmacologia , Neoplasias Pulmonares/patologia , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Digoxigenina/análogos & derivados , Digoxigenina/farmacologia , Humanos , Neoplasias Pulmonares/metabolismo , Modelos Biológicos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Superóxidos/metabolismo , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo
4.
Proteomics ; 16(1): 33-46, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26425798

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with a life expectancy of less than 5 years post diagnosis for most patients. Poor molecular characterization of IPF has led to insufficient understanding of the pathogenesis of the disease, resulting in lack of effective therapies. In this study, we have integrated a label-free LC-MS based approach with systems biology to identify signaling pathways and regulatory nodes within protein interaction networks that govern phenotypic changes that may lead to IPF. Ingenuity Pathway Analysis of proteins modulated in response to bleomycin treatment identified PI3K/Akt and Wnt signaling as the most significant profibrotic pathways. Similar analysis of proteins modulated in response to vascular endothelial growth factor (VEGF) inhibitor (CBO-P11) treatment identified natural killer cell signaling and PTEN signaling as the most significant antifibrotic pathways. Mechanistic/mammalian target of rapamycin (mTOR) and extracellular signal-regulated kinase (ERK) were identified to be key mediators of pro- and antifibrotic response, where bleomycin (BLM) treatment resulted in increased expression and VEGF inhibitor treatment attenuated expression of mTOR and ERK. Using a BLM mouse model of pulmonary fibrosis and VEGF inhibitor CBO-P11 as a therapeutic measure, we identified a comprehensive set of signaling pathways and proteins that contribute to the pathogenesis of pulmonary fibrosis that can be targeted for therapy against this fatal disease.


Assuntos
Bleomicina , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/metabolismo , Mapas de Interação de Proteínas , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Junções Aderentes/metabolismo , Animais , Linhagem Celular , Fatores de Crescimento Endotelial/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , PTEN Fosfo-Hidrolase/metabolismo , Peptídeos Cíclicos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteômica/métodos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos
5.
J Cell Biochem ; 116(11): 2484-93, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25919965

RESUMO

Pulmonary fibrosis is a progressive lung disease hallmarked by increased fibroblast proliferation, amplified levels of extracellular matrix deposition and increased angiogenesis. Although dysregulation of angiogenic mediators has been implicated in pulmonary fibrosis, the specific rate-limiting angiogenic markers involved and their role in the progression of pulmonary fibrosis remains unclear. We demonstrate that bleomycin treatment induces angiogenesis, and inhibition of the central angiogenic mediator VEGF using anti-VEGF antibody CBO-P11 significantly attenuates bleomycin-induced pulmonary fibrosis in vivo. Bleomycin-induced nitric oxide (NO) was observed to be the key upstream regulator of VEGF via the PI3k/Akt pathway. VEGF regulated other important angiogenic proteins including PAI-1 and IL-8 in response to bleomycin exposure. Inhibition of NO and VEGF activity significantly mitigated bleomycin-induced angiogenic and fibrogenic responses. NO and VEGF are key mediators of bleomycin-induced pulmonary fibrosis, and could serve as important targets against this debilitating disease. Overall, our data suggests an important role for angiogenic mediators in the pathogenesis of bleomycin-induced pulmonary fibrosis.


Assuntos
Bleomicina/toxicidade , Fatores de Crescimento Endotelial/administração & dosagem , Cirrose Hepática Experimental/prevenção & controle , Neovascularização Patológica/prevenção & controle , Óxido Nítrico/metabolismo , Peptídeos Cíclicos/administração & dosagem , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Linhagem Celular , Fatores de Crescimento Endotelial/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Cirrose Hepática Experimental/genética , Cirrose Hepática Experimental/metabolismo , Cirrose Hepática Experimental/patologia , Camundongos , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Peptídeos Cíclicos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/genética
6.
Biotechnol Bioeng ; 111(9): 1853-63, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24752654

RESUMO

Challenges in demonstrating durable clinical responses to molecular-targeted therapies have sparked a re-emergence in viewing cancer as an evolutionary process. In somatic evolution, cellular variants are introduced through a random process of somatic mutation and are selected for improved fitness through a competition for survival. In contrast to Darwinian evolution, cellular variants that are retained may directly alter the fitness competition. If cell-to-cell communication is important for selection, the biochemical cues secreted by malignant cells that emerge should be altered to bias this fitness competition. To test this hypothesis, we compared the proteins secreted in vitro by two human HER2+ breast cancer cell lines (BT474 and SKBR3) relative to a normal human mammary epithelial cell line (184A1) using a proteomics workflow that leveraged two-dimensional gel electrophoresis (2DE) and MALDI-TOF mass spectrometry. Supported by the 2DE secretome maps and identified proteins, the two breast cancer cell lines exhibited secretome profiles that were similar to each other and, yet, were distinct from the 184A1 secretome. Using protein-protein interaction and pathway inference tools for functional annotation, the results suggest that all three cell lines secrete exosomes, as confirmed by scanning electron microscopy. Interestingly, the HER2+ breast cancer cell line exosomes are enriched in proteins involved in antigen-processing and presentation and glycolytic metabolism. These pathways are associated with two of the emerging hallmarks of cancer: evasion of tumor immunosurveillance and deregulating cellular energetics.


Assuntos
Comunicação Celular , Células Epiteliais/fisiologia , Exossomos/metabolismo , Proteínas/metabolismo , Proteoma/análise , Linhagem Celular Tumoral , Eletroforese em Gel Bidimensional , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Exossomos/ultraestrutura , Humanos , Microscopia Eletrônica de Varredura , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
7.
Analyst ; 138(22): 6986-96, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24091439

RESUMO

Caveolin-1 (Cav1) is a small scaffolding protein involved in a variety of cellular functions, including cell signaling, lipid transport and membrane traffic. The objective of this study was to use comparative proteomics to identify differentially expressed proteins in Cav1 knockout (KO) mouse embryonic fibroblasts. These deregulated proteins were then analyzed using systems biology tools to gain insight into the local network properties and to identify the interaction partners of Cav1. We identified five proteins that were up-regulated and ten proteins that were down-regulated in Cav1 KO cells, suggesting that the local network behaves as a complex system. Protein interaction network analysis revealed two proteins, Sh2b3 and Clec12b, as novel interaction partners of Cav1. Functional annotation showed apoptosis signaling as the most significant pathway. To validate this functional annotation, Cav1 KO cells showed more than 1.5-fold increase in caspase-3 activity over wild type cells upon apoptotic stimulation. We also found that calpain small subunit 1 is up-regulated in Cav1 KO cells and directly influences the cell response to apoptotic stimuli. Moreover, Capns1 was reduced in Cav1 KO cells following re-expression of Cav1, and suppression of Capns1 expression in Cav1 KO cells significantly inhibited the cells to apoptotic stimuli, as measured by caspase 3 activity. In conclusion, our results suggest that Sh2b3 and Clec12b functionally interact with Cav1 and that calpain small subunit 1 may mediate Cav1-induced apoptosis.


Assuntos
Apoptose , Calpaína/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Lectinas Tipo C/metabolismo , Proteínas/metabolismo , Proteômica , Receptores Mitogênicos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Eletroforese em Gel Bidimensional , Humanos , Immunoblotting , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Knockout
8.
Integr Biol (Camb) ; 4(8): 925-36, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22777646

RESUMO

Interleukin-12 (IL12) enhances anti-tumor immunity when delivered to the tumor microenvironment. However, local immunoregulatory elements dampen the efficacy of IL12. The identity of these local mechanisms used by tumors to suppress immunosurveillance represents a key knowledge gap for improving tumor immunotherapy. From a systems perspective, local suppression of anti-tumor immunity is a closed-loop system - where system response is determined by an unknown combination of external inputs and local cellular cross-talk. Here, we recreated this closed-loop system in vitro and combined quantitative high content assays, in silico model-based inference, and a proteomic workflow to identify the biochemical cues responsible for immunosuppression. Following an induction period, the B16 melanoma cell model, a transplantable model for spontaneous malignant melanoma, inhibited the response of a T helper cell model to IL12. This paracrine effect was not explained by induction of apoptosis or creation of a cytokine sink, despite both mechanisms present within the co-culture assay. Tumor-derived Wnt-inducible signaling protein-1 (WISP-1) was identified to exert paracrine action on immune cells by inhibiting their response to IL12. Moreover, WISP-1 was expressed in vivo following intradermal challenge with B16F10 cells and was inferred to be expressed at the tumor periphery. Collectively, the data suggest that (1) biochemical cues associated with epithelial-to-mesenchymal transition can shape anti-tumor immunity through paracrine action and (2) remnants of the immunoselective pressure associated with evolution in cancer include both sculpting of tumor antigens and expression of proteins that proactively shape anti-tumor immunity.


Assuntos
Proteínas de Sinalização Intercelular CCN/metabolismo , Melanoma Experimental/imunologia , Melanoma/imunologia , Proteínas Proto-Oncogênicas/metabolismo , Animais , Anticorpos Monoclonais/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular , Citometria de Fluxo/métodos , Humanos , Sistema Imunitário , Imunossupressores/farmacologia , Interleucina-12/metabolismo , Melanoma/metabolismo , Melanoma Experimental/metabolismo , Camundongos , Fator de Transcrição STAT4/metabolismo , Transdução de Sinais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Linfócitos T Auxiliares-Indutores/citologia , Fatores de Tempo
9.
Proteome Sci ; 10(1): 11, 2012 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-22357162

RESUMO

BACKGROUND: A contemporary view of the cancer genome reveals extensive rearrangement compared to normal cells. Yet how these genetic alterations translate into specific proteomic changes that underpin acquiring the hallmarks of cancer remains unresolved. The objectives of this study were to quantify alterations in protein expression in two HER2+ cellular models of breast cancer and to infer differentially regulated signaling pathways in these models associated with the hallmarks of cancer. RESULTS: A proteomic workflow was used to identify proteins in two HER2 positive tumorigenic cell lines (BT474 and SKBR3) that were differentially expressed relative to a normal human mammary epithelial cell line (184A1). A total of 64 (BT474-184A1) and 69 (SKBR3-184A1) proteins were uniquely identified that were differentially expressed by at least 1.5-fold. Pathway inference tools were used to interpret these proteins in terms of functionally enriched pathways in the tumor cell lines. We observed "protein ubiquitination" and "apoptosis signaling" pathways were both enriched in the two breast cancer models while "IGF signaling" and "cell motility" pathways were enriched in BT474 and "amino acid metabolism" were enriched in the SKBR3 cell line. CONCLUSION: While "protein ubiquitination" and "apoptosis signaling" pathways were common to both the cell lines, the observed patterns of protein expression suggest that the evasion of apoptosis in each tumorigenic cell line occurs via different mechanisms. Evidently, apoptosis is regulated in BT474 via down regulation of Bid and in SKBR3 via up regulation of Calpain-11 as compared to 184A1.

10.
BMC Cancer ; 10: 291, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20550684

RESUMO

BACKGROUND: Molecularly targeted drugs inhibit aberrant signaling within oncogenic pathways. Identifying the predominant pathways at work within a tumor is a key step towards tailoring therapies to the patient. Clinical samples pose significant challenges for proteomic profiling, an attractive approach for identifying predominant pathways. The objective of this study was to determine if information obtained from a limited sample (i.e., a single gel replicate) can provide insight into the predominant pathways in two well-characterized breast cancer models. METHODS: A comparative proteomic analysis of total cell lysates was obtained from two cellular models of breast cancer, BT474 (HER2+/ER+) and SKBR3 (HER2+/ER-), using two-dimensional electrophoresis and MALDI-TOF mass spectrometry. Protein interaction networks and canonical pathways were extracted from the Ingenuity Pathway Knowledgebase (IPK) based on association with the observed pattern of differentially expressed proteins. RESULTS: Of the 304 spots that were picked, 167 protein spots were identified. A threshold of 1.5-fold was used to select 62 proteins used in the analysis. IPK analysis suggested that metabolic pathways were highly associated with protein expression in SKBR3 cells while cell motility pathways were highly associated with BT474 cells. Inferred protein networks were confirmed by observing an up-regulation of IGF-1R and profilin in BT474 and up-regulation of Ras and enolase in SKBR3 using western blot. CONCLUSION: When interpreted in the context of prior information, our results suggest that the overall patterns of differential protein expression obtained from limited samples can still aid in clinical decision making by providing an estimate of the predominant pathways that underpin cellular phenotype.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Proteômica , Receptor ErbB-2/metabolismo , Receptores de Estrogênio/metabolismo , Transdução de Sinais , Western Blotting , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Bases de Dados de Proteínas , Eletroforese em Gel Bidimensional , Feminino , Humanos , Seleção de Pacientes , Mapeamento de Peptídeos , Fenótipo , Medicina de Precisão , Proteômica/métodos , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos dos fármacos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...