Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 34(10): ar102, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37494082

RESUMO

Drosophila melanogaster cellularization is a special form of cleavage that converts syncytial embryos into cellular blastoderms by partitioning the peripherally localized nuclei into individual cells. An early event in cellularization is the recruitment of nonmuscle myosin II ("myosin") to the leading edge of cleavage furrows, where myosin forms an interconnected basal array before reorganizing into individual cytokinetic rings. The initial recruitment and organization of basal myosin are regulated by a cellularization-specific gene, dunk, but the underlying mechanism is unclear. Through a genome-wide yeast two-hybrid screen, we identified anillin (Scraps in Drosophila), a conserved scaffolding protein in cytokinesis, as the primary binding partner of Dunk. Dunk colocalizes with anillin and regulates its cortical localization during the formation of cleavage furrows, while the localization of Dunk is independent of anillin. Furthermore, Dunk genetically interacts with anillin to regulate the basal myosin array during cellularization. Similar to Dunk, anillin colocalizes with myosin since the very early stage of cellularization and is required for myosin retention at the basal array, before the well-documented function of anillin in regulating cytokinetic ring assembly. Based on these results, we propose that Dunk regulates myosin recruitment and spatial organization during early cellularization by interacting with and regulating anillin.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Proteínas Contráteis/metabolismo , Citocinese/fisiologia , Proteínas do Citoesqueleto/metabolismo , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Miosina Tipo II/metabolismo , Miosinas/metabolismo , RNA/metabolismo
2.
PLoS One ; 8(5): e62229, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23667461

RESUMO

Protein O-mannosyltransferases (PMTs) catalyze the initial reaction of protein O-mannosylation by transferring the first mannose unit onto serine and threonine residues of a nascent polypeptide being synthesized in the endoplasmic reticulum (ER). The PMTs are well conserved in eukaryotic organisms, and in vivo defects of these enzymes result in cell death in yeast and congenital diseases in humans. A group of rhodanine-3-acetic acid derivatives (PMTi) specifically inhibits PMT activity both in vitro and in vivo. As such, these chemical compounds have been effectively used to minimize the extent of O-mannosylation on heterologously produced proteins from different yeast expression hosts. However, very little is known about how these PMT-inhibitors interact with the PMT enzyme, or what structural features of the PMTs are required for inhibitor-protein interactions. To better understand the inhibitor-enzyme interactions, and to gain potential insights for developing more effective PMT-inhibitors, we isolated PMTi-resistant mutants in Pichia pastoris. In this study, we report the identification and characterization of a point mutation within the PpPMT2 gene. We demonstrate that this F664S point mutation resulted in a near complete loss of PMTi sensitivity, both in terms of growth-inhibition and reduction in O-mannosylglycan site occupancy. Our results provide genetic evidence demonstrating that the F664 residue plays a critical role in mediating the inhibitory effects of these PMTi compounds. Our data also indicate that the main target of these PMT-inhibitors in P. pastoris is Pmt2p, and that the F664 residue most likely interacts directly with the PMTi-compounds.


Assuntos
Inibidores Enzimáticos/farmacologia , Manosiltransferases/antagonistas & inibidores , Manosiltransferases/genética , Pichia/enzimologia , Acetatos/farmacologia , Substituição de Aminoácidos , Retículo Endoplasmático/metabolismo , Mutagênese , Mutação de Sentido Incorreto/genética , Pichia/genética , Plasmídeos/genética , Mutação Puntual/genética , Rodanina/farmacologia
3.
J Ind Microbiol Biotechnol ; 37(9): 961-71, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20711797

RESUMO

The methylotrophic yeast Pichia pastoris has recently been engineered to express therapeutic glycoproteins with uniform human N-glycans at high titers. In contrast to the current art where producing therapeutic proteins in mammalian cell lines yields a final product with heterogeneous N-glycans, proteins expressed in glycoengineered P. pastoris can be designed to carry a specific, preselected glycoform. However, significant variability exists in fermentation performance between genotypically similar clones with respect to cell fitness, secreted protein titer, and glycan homogeneity. Here, we describe a novel, multidimensional screening process that combines high and medium throughput tools to identify cell lines producing monoclonal antibodies (mAbs). These cell lines must satisfy multiple selection criteria (high titer, uniform N-glycans and cell robustness) and be compatible with our large-scale production platform process. Using this selection process, we were able to isolate a mAb-expressing strain yielding a titer (after protein A purification) in excess of 1 g/l in 0.5-l bioreactors.


Assuntos
Anticorpos Monoclonais/biossíntese , Engenharia Genética , Glicoproteínas/biossíntese , Pichia/isolamento & purificação , Proteínas Recombinantes/biossíntese , Anticorpos Monoclonais/genética , Reatores Biológicos , Técnicas de Cultura de Células , Linhagem Celular , DNA Fúngico/genética , Fermentação , Expressão Gênica , Glicoproteínas/genética , Glicosilação , Humanos , Técnicas Microbiológicas , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/genética , Seleção Genética , Transformação Genética
4.
Glycoconj J ; 25(6): 581-93, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18365311

RESUMO

Traditional production of therapeutic glycoproteins relies on mammalian cell culture technology. Glycoproteins produced by mammalian cells invariably display N-glycan heterogeneity resulting in a mixture of glycoforms the composition of which varies from production batch to production batch. However, extent and type of N-glycosylation has a profound impact on the therapeutic properties of many commercially relevant therapeutic proteins making control of N-glycosylation an emerging field of high importance. We have employed a combinatorial library approach to generate glycoengineered Pichia pastoris strains capable of displaying defined human-like N-linked glycans at high uniformity. The availability of these strains allows us to elucidate the relationship between specific N-linked glycans and the function of glycoproteins. The aim of this study was to utilize this novel technology platform and produce two human-like N-linked glycoforms of recombinant human lactoferrin (rhLF), sialylated and non-sialylated, and to evaluate the effects of terminal N-glycan structures on in vitro secondary humoral immune responses. Lactoferrin is considered an important first line defense protein involved in protection against various microbial infections. Here, it is established that glycoengineered P. pastoris strains are bioprocess compatible. Analytical protein and glycan data are presented to demonstrate the capability of glycoengineered P. pastoris to produce fully humanized, active and immunologically compatible rhLF. In addition, the biological activity of the rhLF glycoforms produced was tested in vitro revealing the importance of N-acetylneuraminic (sialic) acid as a terminal sugar in propagation of proper immune responses.


Assuntos
Lactoferrina/metabolismo , Pichia/metabolismo , Proteínas Recombinantes/metabolismo , Sequência de Aminoácidos , Animais , Células Cultivadas , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Ensaio de Imunoadsorção Enzimática , Feminino , Expressão Gênica , Engenharia Genética/métodos , Glicoproteínas/química , Glicoproteínas/imunologia , Glicoproteínas/metabolismo , Glicosilação , Humanos , Lactoferrina/química , Lactoferrina/genética , Masculino , Espectrometria de Massas , Dados de Sequência Molecular , Pichia/genética , Proteínas Recombinantes/química , Alinhamento de Sequência , Ovinos , Ácidos Siálicos/química , Ácidos Siálicos/imunologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA