Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1011, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38307863

RESUMO

The reversible phase transitions in phase-change memory devices can switch on the order of nanoseconds, suggesting a close structural resemblance between the amorphous and crystalline phases. Despite this, the link between crystalline and amorphous tellurides is not fully understood nor quantified. Here we use in-situ high-temperature x-ray absorption spectroscopy (XAS) and theoretical calculations to quantify the amorphous structure of bulk and nanoscale GeTe. Based on XAS experiments, we develop a theoretical model of the amorphous GeTe structure, consisting of a disordered fcc-type Te sublattice and randomly arranged chains of Ge atoms in a tetrahedral coordination. Strikingly, our intuitive and scalable model provides an accurate description of the structural dynamics in phase-change memory materials, observed experimentally. Specifically, we present a detailed crystallization mechanism through the formation of an intermediate, partially stable 'ideal glass' state and demonstrate differences between bulk and nanoscale GeTe leading to size-dependent crystallization temperature.

2.
ACS Nano ; 18(1): 1063-1072, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38117038

RESUMO

Phase-change memory (PCM) is an emerging memory technology based on the resistance contrast between the crystalline and amorphous states of a material. Further development and realization of PCM as a mainstream memory technology rely on innovative materials and inexpensive fabrication methods. Here, we propose a generalizable and scalable solution-processing approach to synthesize phase-change telluride inks in order to meet demands for high-throughput material screening, increased energy efficiency, and advanced device architectures. Bulk tellurides, such as Sb2Te3, GeTe, Sc2Te3, and TiTe2, are dissolved and purified to obtain inks of molecular metal telluride complexes. This allowed us to unlock a wide range of solution-processed ternary tellurides by the simple mixing of binary inks. We demonstrate accurate and quantitative composition control, including prototype materials (Ge-Sb-Te) and emerging rare-earth-metal telluride-doped materials (Sc-Sb-Te). Spin-coating and annealing convert ink formulations into high-quality, phase-pure telluride films with preferred orientation along the (00l) direction. Deposition engineering of liquid tellurides enables thickness-tunable films, infilling of nanoscale vias, and film preparation on flexible substrates. Finally, we demonstrate cyclable and non-volatile prototype memory devices, achieving performance indicators such as resistance contrast and low reset energy on par with state-of-the-art sputtered PCM layers.

3.
ACS Nano ; 17(7): 6985-6997, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36971128

RESUMO

A structural change between amorphous and crystalline phase provides a basis for reliable and modular photonic and electronic devices, such as nonvolatile memory, beam steerers, solid-state reflective displays, or mid-IR antennas. In this paper, we leverage the benefits of liquid-based synthesis to access phase-change memory tellurides in the form of colloidally stable quantum dots. We report a library of ternary MxGe1-xTe colloids (where M is Sn, Bi, Pb, In, Co, Ag) and then showcase the phase, composition, and size tunability for Sn-Ge-Te quantum dots. Full chemical control of Sn-Ge-Te quantum dots permits a systematic study of structural and optical properties of this phase-change nanomaterial. Specifically, we report composition-dependent crystallization temperature for Sn-Ge-Te quantum dots, which is notably higher compared to bulk thin films. This gives the synergistic benefit of tailoring dopant and material dimension to combine the superior aging properties and ultrafast crystallization kinetics of bulk Sn-Ge-Te, while improving memory data retention due to nanoscale size effects. Furthermore, we discover a large reflectivity contrast between amorphous and crystalline Sn-Ge-Te thin films, exceeding 0.7 in the near-IR spectrum region. We utilize these excellent phase-change optical properties of Sn-Ge-Te quantum dots along with liquid-based processability for nonvolatile multicolor images and electro-optical phase-change devices. Our colloidal approach for phase-change applications offers higher customizability of materials, simpler fabrication, and further miniaturization to the sub-10 nm phase-change devices.

4.
J Phys Chem Lett ; 13(25): 5824-5830, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35726976

RESUMO

Gold nanoparticles that are partially or fully covered by metal oxide shells provide superior functionality and stability for catalytic and plasmonic applications. Yet, facile methods for controlled fabrication of thin oxide layers on metal nanoparticles are lacking. Here, we report an easy method to reliably engineer thin Ga2O3 shells on Au nanoparticles, based on liquid-phase chemical oxidation of Au-Ga alloy nanoparticles. We demonstrate that, with this technique, laminar and ultrathin Ga2O3 shells can be grown with ranging thickness from sub- to several monolayers. We show how the localized surface plasmon resonance can be used to understand the reaction process and quantitatively monitor the Ga2O3 shell growth. Finally, we demonstrate that the Ga2O3 coating prevents sintering of the Au nanoparticles, providing thermal stability to at least 250 °C. This approach, building on dealloying of bimetallic nanoparticles by the solution-phase oxidation, promises a general technique for achieving controlled metal/oxide core/shell nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...