Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(13): 9311-9317, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38502926

RESUMO

A π-conjugated molecule with one electronic spin often forms a π-stacked dimer through molecular orbital interactions between two unpaired electrons. The bonding is recognized as a multicentered two-electron interaction between the two π-conjugated molecules. Here, we disclose a multicentered bonding interaction between two antiaromatic molecules involving four electrons. We have synthesized an antiaromatic porphyrin analogue, Ni(II) bis(pentafluorophenyl)norcorrole. Its dimer adopts a face-to-face stacked structure with an extremely short stacking distance of 2.97 Å. The close stacking originates from a multicenter four-electron bonding interaction between the two molecules. The bonding electrons were experimentally observed via synchrotron X-ray diffraction analysis and corroborated by theoretical calculations. The intermolecular interaction of the molecular orbitals imparts the stacked dimer with aromatic character that is distinctly different from that of its monomer.

2.
J Phys Chem B ; 128(8): 2000-2009, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38377516

RESUMO

Cyclosporine A (CsA), a naturally derived biomaterial and physiologically active substance, is commonly used as an immunosuppressant. In this study, CsA was revealed to function as a chiral inducer of cholesteric liquid crystals (CLCs) with a high helical twisting power. CsA induced helical structures in 4-cyano-4'-pentylbiphenyl, a synthetic liquid crystal (LC) used for general purposes. Electrochemical polymerization in CLC with CsA was also performed. The polymer prepared in CLC showed electro-optical activity via chiral induction by CsA. Synchrotron X-ray diffraction measurements indicated that the polymer film prepared in the CLC formed in the manner of LC molecular arrangement through molecular form imprinting from the LC order, although the polymer exhibited no liquid crystallinity. The polymer showed structural color and laser light oscillation diffraction derived from its periodic structure. The anisotropy of the circularly polarized electron spin resonance signals for the resulting polymer with respect to the magnetic field was observed.

3.
Adv Sci (Weinh) ; 11(13): e2308270, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38268432

RESUMO

Some rodlike organic molecules exhibit exceptionally high layered crystallinity when composed of a link between π-conjugated backbone (head) and alkyl chain (tail). These molecules are aligned side-by-side unidirectionally to form self-organized polar monomolecular layers, providing promising 2D materials and devices. However, their interlayer stacking arrangements have never been tunable, preventing the unidirectional arrangements of molecules in whole crystals. Here, it is demonstrated that polar/antipolar interlayer stacking can be systematically controlled by the alkyl carbon number n, when the molecules are designed to involve effectively weakened head-to-head affinity. They exhibit remarkable odd-even effect in the interlayer stacking: alternating head-to-head and tail-to-tail (antipolar) arrangement in odd-n crystals, and uniform head-to-tail (polar) arrangement in even-n crystals. The films show excellent field-effect transistor characteristics presenting unique polar/antipolar dependence and considerably improved subthreshold swing in the polar films. Additionally, the polar films present enhanced second-order nonlinear optical response along normal to the film plane. These findings are key for creating polarity-controlled optoelectronic materials and devices.

4.
Sci Rep ; 13(1): 8810, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37258569

RESUMO

Some organic ferroelectrics have two possible switching modes: molecular reorientation and proton transfer. Typical examples include 2,5-dihydroxybenzoic acid (DHBA) and Hdabco-ReO[Formula: see text] (dabco = diazabicyclo[2.2.2]octane). The direction and amplitude of the expected polarization depends on the switching mode. Herein a straightforward method to identify the ferroelectric switching mechanism is demonstrated. First, the relationship between the polarization vectors corresponding to the two modes is illustrated using the Berry phase. Second, the theoretical background for the sign of the piezoelectric coefficient is used to decide which mode occurs. Finally, comparing the theoretically calculated piezoelectric coefficients to the experimental results confirms the switching mode of each compound.

5.
Sci Adv ; 9(19): eadg8202, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37172082

RESUMO

Stacked teacups inspired the idea that columnar assemblies of stacked bowl-shaped molecules may exhibit a unique dynamic behavior, unlike usual assemblies of planar disc- and rod-shaped molecules. On the basis of the molecular design concept for creating higher-order discotic liquid crystals, found in our group, we synthesized a sumanene derivative with octyloxycarbonyl side chains. This molecule forms an ordered hexagonal columnar mesophase, but unexpectedly, the columnar assembly is very soft, similar to sugar syrup. It displays, upon application of a shear force on solid substrates, a flexible bending motion with continuous angle variations of bowl-stacked columns while preserving the two-dimensional hexagonal order. In general, alignment control of higher-order liquid crystals is difficult to achieve due to their high viscosity. The present system that brings together higher structural order and mechanical softness will spark interest in bowl-shaped molecules as a component for developing higher-order liquid crystals with unique mechanical and stimuli-responsive properties.

6.
J Am Chem Soc ; 145(4): 2135-2141, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36210512

RESUMO

Stacked-ring aromaticity arising from the close stacking of antiaromatic π-systems has recently received considerable attention. Here, we realize stacked-ring aromaticity via a rational supramolecular approach. A nanocapsule composed of bent polyaromatic amphiphiles was employed to encapsulate several antiaromatic norcorrole Ni(II) complexes (NCs) in water. The resulting micellar capsules display high stability toward heating and concentration change. The encapsulation resulted in the appearance of a broad absorption band in the near-infrared region, which is characteristic of norcorroles with close face-to-face stacking. Importantly, a meso-isopropyl NC, which does not exhibit π-stacking even in a concentrated solution or the crystalline phase, adopted π-stacking with stacked-ring aromaticity in the supramolecular micellar capsule.

7.
Chem Sci ; 13(34): 9891-9901, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36128239

RESUMO

The alignment control of discotic columnar liquid crystals (LCs), featuring a low motility of the constituent molecules and thus having a large viscosity, is a challenging task. Here we show that triphenylene hexacarboxylic ester, when functionalized with hybrid side chains consisting of alkyl and perfluoroalkyl groups in an appropriate ratio, gives a hexagonal columnar (Colh) LC capable of selectively forming large-area uniform homeotropic or homogeneous alignments, upon cooling from its isotropic melt or upon application of a shear force at its LC temperature, respectively. In addition to the alignment switching ability, each alignment state remains persistent unless the LC is heated to its melting temperature. In situ X-ray diffraction analysis under the application of a shear force, together with polarized optical microscopy observations, revealed how the columnar assembly is changed during the alignment-switching process. The remarkable behavior of the discotic LC is discussed in terms of its rheological properties.

8.
Chem Commun (Camb) ; 57(79): 10162-10165, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34516598

RESUMO

Mononuclear and icosanuclear spin-crossover complexes, [FeII(HL)2](BF4)2 (1) and [FeII20(L)24](BF4)16 (2), were synthesized using an asymmetric multidentate ligand (HL). 1 has a bis-chelate structure with two protonated ligands, while 2 has a ring-shape structure comprising four [2 × 2] grid moieties and four mononuclear units.

9.
Micron ; 150: 103136, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34509885

RESUMO

The exoskeleton of the ground beetle Carabus insulicola was observed using polarizing optical microscopy (POM) with simultaneous transmitted and reflected light. The surface showed iridescence owing to the periodic microstructure. A Maltese cross array of the inner layer of the elytra was observed. The matrix of the middle layer of the elytra is composed of protein with the arrangement of a cholesteric liquid crystal (CLC)-like helical structure. The scanning electron microscopy observations revealed the layers structure of the exoskeleton of the ground beetle. Synchrotron X-ray diffraction measurement evaluated crystallinity of the exoskeleton. Morphology of the Maltese cross array of the beetle has similarity with synthetic chiral-CLC.


Assuntos
Besouros , Animais , Microscopia Eletrônica de Varredura
10.
ACS Appl Mater Interfaces ; 13(1): 989-998, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33332081

RESUMO

Anthracene, a simple planar building block for organic semiconductors, shows strong intermolecular interactions and exhibits strong blue fluorescence. Thus, its derivatives have a great potential to integrate considerable charge carrier mobility and strong emission within a molecule. Here, we systematically studied the influence of alkyl chain length on the crystal structures, thermal properties, photophysical characteristics, electrochemical behaviors, and mobilities for a series of 2,6-di(4-alkyl-phenyl)anthracenes (Cn-Ph-Ants, where n represents the alkyl chain length). Among them, Cn-Ph-Ants (n = 0, 1, 2, and 3) display similar layered herringbone (LHB) packing motifs, which facilitate two-dimensional charge transport and thereby enables high-performance organic field-effect transistors (OFETs). All Cn-Ph-Ants exhibit similar work functions and show strong blue fluorescence with photoluminescence quantum yields (PLQY) of approximately 40% in toluene. In addition, the absolute powder PLQYs of C0-, C2-, C3-, C4-, and C6-Ph-Ants are 24.6, 8.2, 5.7, 10.9, and 8.6%, respectively. Note that the alkyl chain length shows a significant effect on the charge mobilities of Cn-Ph-Ants. Our newly synthesized C1-, C3-, and C4-Ph-Ants show hole mobilities of up to 2.40, 1.34, and 1.00 cm2 V-1 s-1, respectively, with mobilities of 3.40, 1.57, and 0.82 cm2 V-1 s-1 for C0-, C2-, and C6-Ph-Ants, indicating an increasing tendency of mobility with shorter alkyl chain length. This feature is related to the microstructures of the thin films, which reveal the enhanced film order, crystallinity, and grain size with a decrease in the alkyl chain length. Moreover, we theoretically analyze the intermolecular transfer integrals of HOMOs, which increase at T-shaped contacts as the alkyl chain length decreases, which improves the intermolecular charge transport properties, leading to the increases in mobility. Interestingly, the anisotropy of the transfer integral tends to decrease upon substitution with longer alkyl chains, suggesting that alkyl chain adjustments may facilitate isotropic charge transport property in 2,6-alkylated anthracenes.

11.
Chem Sci ; 11(24): 6183-6192, 2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32874515

RESUMO

Metaelectric transition, i.e. an abrupt increase in polarization with an electric field is just a phase change phenomenon in dielectrics and attracts increasing interest for practical applications such as electrical energy storage and highly deformable transducers. Here we demonstrate that both field-induced metaelectric transitions and temperature-induced phase transitions occur successively on a crystal of highly polarizable bis-(1H-benzimidazol-2-yl)-methane (BI2C) molecules. In each molecule, two switchable polar subunits are covalently linked with each other. By changing the NH hydrogen location, the low- and high-dipole states of each molecule can be interconverted, turning on and off the polarization of hydrogen-bonded molecular ribbons. In the low-temperature phase III, the tetragonal crystal lattice comprises orthogonally crossed arrays of polar ribbons made up of a ladder-like hydrogen-bond network of fully polarized molecules. The single-step metaelectric transition from this phase III corresponds to the forced alignment of antiparallel dipoles typical of antiferroelectrics. By the transition to the intermediate-temperature phase II, the polarity is turned off for half of the ribbons so that the nonpolar and polar ribbons are orthogonal to each other. Considering also the ferroelastic-like crystal twinning, the doubled steps of metaelectric transitions observed in the phase II can be explained by the additional switching at different critical fields, by which the nonpolar ribbons undergo "metadielectric" molecular transformation restoring the strong polarization. This mechanism inevitably brings about exotic phase change phenomena transforming the multi-domain state of a homogeneous phase into an inhomogeneous (phase mixture) state.

12.
J Phys Chem Lett ; 11(4): 1336-1342, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31977223

RESUMO

The charge-transfer (CT) tetrathiafulvalene-p-chloranil (TTF-CA) crystal, a representative functional organic electronic material, has been the subject of both basic and applied research. This material shows a neutral-ionic phase transition (NIPT) that induces drastic changes in its physical properties. Here, we use this crystal as a framework and demonstrate a method for modulating physical properties of TTF-CA. A number of multicomponent (ternary) CT crystals were obtained by crystallizing TTF-CA with a third molecular species. These complexes all contain molecular sheets formed with TTF-CA; however, the third molecules were differently inserted between these sheets as spacers to induce a variety of physical properties in the CT crystals. Some showed spacer-modified NIPT, while the transition to the ionic state was suppressed in one complex despite the presence of TTF-CA sheets, which indicates that spacer molecules can modulate the physical properties or functions of CT crystals.

13.
Chem Sci ; 11(46): 12493-12505, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34976335

RESUMO

The construction and control of 2D layered molecular packing motifs with functionally substituted π-electron cores are crucial for developing organic electronic materials and devices. We investigated a regioisomeric structure-property relationship in high-performance and solution-processable layered organic semiconductors based on mono-octyl-substituted benzothieno[3,2-b]naphtho[2,3-b]thiophene (mono-C8-BTNT). We demonstrated that an isomorphous bilayer-type layered herringbone packing motif is obtainable in a series of four positional isomers of mono-C8-BTNTs whose π-electron core is substituted by an octyl chain at one of the four most peripheral positions with roughly keeping the rod-like molecular shape. These regioisomeric compounds exhibited systematic variations in the solvent solubility and liquid-crystalline phase transitions at elevated temperatures. The analysis of intermolecular interaction energies in the crystals based on dispersion-corrected DFT calculations revealed that the crystals of 2- and 8-mono-C8-BTNTs are more stable than those of 3- and 9-mono-C8-BTNTs owing to the higher ordering of alkyl chain layers in the crystals. Such differences of the stability in their crystal formation are closely correlated with TFT performances, where the single-crystal devices of the 2- and 8-mono-C8-BTNTs substituted at the most peripheral positions exhibit high-performance TFT characteristics with a mobility of approximately 10 cm2 V-1 s-1.

14.
Polymers (Basel) ; 11(2)2019 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-30960332

RESUMO

While only a few studies have investigated the synthesis of main chain-type polyazobenzenes, they continue to draw an increasing amount of attention owing to their industrial applications in holography, dyes, and functional adhesives. In this study, dibromoazobenzene was prepared as a monomer for constructing azo-based π-conjugated polymers. Miyaura⁻Suzuki cross-coupling polymerization was conducted to develop copolymers containing an azobenzene unit as a photoisomerization block and a pyrimidine-based liquid crystal generator block. The prepared polymers exhibited thermotropic liquid crystallinity and underwent cis and trans photoisomerization upon irradiation with ultraviolet and visible light. Furthermore, the photoisomerization behavior was examined using optical absorption spectroscopy and synchrotron X-ray diffraction spectrometry.

15.
Dalton Trans ; 48(10): 3231-3236, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30720038

RESUMO

Three mononuclear iron(ii) complexes of the formula [FeII(H2L1-3)2](BF4)2·x(solv.) (H2L1-3 = 2-[5-(R-phenyl)-1H-pyrazole-3-yl] 6-benzimidazole pyridine; H2L1: R = 4-methylphenyl, H2L2, R = 2,4,6-trimethylphenyl, H2L3, R = 2,3,4,5,6-pentamethylphenyl) (1, H2L1; 2, H2L2; 3, H2L3) with asymmetric tridentate ligands (H2L1-3) were synthesized and their structures and magnetic behaviour investigated. Significant structural distortions of the dihedral angles between phenyl and pyrazole groups were observed and found to depend on the nature of the substituent groups. Cryomagnetic studies reveal that 1 and 2 show gradual spin crossover behavior, while 3 remains in the high spin state between 1.8 and 300 K.

16.
Angew Chem Int Ed Engl ; 58(17): 5658-5662, 2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30753754

RESUMO

A mononuclear FeII complex, prepared with a Brønsted diacid ligand, H2 L (H2 L=2-[5-phenyl-1H-pyrazole-3-yl] 6-benzimidazole pyridine), shows switchable physical properties and was isolated in five different electronic states. The spin crossover (SCO) complex, [FeII (H2 L)2 ](BF4 )2 (1A ), exhibits abrupt spin transition at T1/2 =258 K, and treatment with base yields a deprotonated analogue [FeII (HL)2 ] (1B ), which shows gradual SCO above 350 K. A range of FeIII analogues were also characterized. [FeIII (HL)(H2 L)](BF4 )Cl (1C ) has an S=5/2 spin state, while the deprotonated complexes [FeIII (L)(HL)], (1D ), and (TEA)[FeIII (L)2 ], (1E ) exist in the low-spin S=1/2 state. The electronic properties of the five complexes were fully characterized and we demonstrate in situ switching between multiple states in both solution and the solid-state. The versatility of this simple mononuclear system illustrates how proton donor/acceptor ligands can vastly increase the range of accessible states in switchable molecular devices.

17.
RSC Adv ; 9(32): 18353-18358, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35515234

RESUMO

Purely organic crystals, κ-X3(Cat-EDT-TTF)2 [X = H or D, Cat-EDT-TTF = catechol-fused tetrathiafulvalene], are a new type of molecular conductor with hydrogen dynamics. In this work, hydrostatic pressure effects on these materials were investigated in terms of the electrical resistivity and crystal structure. The results indicate that the pressure induces and promotes hydrogen (deuterium) localization in the hydrogen bond, in contrast to the case of the conventional hydrogen-bonded materials (where pressure prevents hydrogen localization), and consequently leads to a significant change in the electrical conducting properties (i.e., the occurrence of a semiconductor-insulator transition). Therefore, we have successfully found a new type of pressure-induced phase transition where the cooperation of the hydrogen dynamics and π-electron interactions plays a crucial role.

18.
RSC Adv ; 9(68): 39662-39673, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-35541415

RESUMO

Supramolecular cocrystals of anilic acids with 2,2'-bipyridines exhibit successive phase transitions as well as unusual isotope effects. Ferroelectricity driven by a cooperative proton transfer along the supramolecular chains is accompanied by huge permittivity (a maximum of 13 000) at the Curie point, as well as a large spontaneous polarization (maximum 5 µC cm-2) and a low coercive field ranging from 0.5 to 10 kV cm-1. Deuterium substitutions over the hydrogen bonds smoothly raise the Curie point and simultaneously reduce other phase-transition temperatures by a few tens of degrees. The coexistence of opposite isotope effects reduces the temperature interval of the intermediate paraelectric phase from 84 to 10 K for the 5,5'-dimethyl-2,2'-bipyridinium bromanilate salt. The bipyridine molecules exhibit interplanar twisting, which represents the order parameter relevant to the high-temperature phase transitions. The normal and inverse temperature shifts are ascribed to the direct and indirect effects, respectively, of the lengthened hydrogen bonds, which adjusts the molecular conformation of the flexible bipyridine unit so as to minimally modify their adjacent intermolecular interactions.

19.
Inorg Chem ; 57(22): 14013-14017, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30379073

RESUMO

Two carboxyl-substituted iron(II) grids, one protonated, [Fe4(HL)4](BF4)4·4MeCN·AcOEt (1), and the other deprotonated, [Fe4(L)4]·DMSO·EtOH (2), where H2L = 4-{4,5-bis[6-(3,5-dimethylpyrazol-1-yl)pyrid-2-yl]-1 H-imidazol-2-yl}benzoic acid, were synthesized. Single-crystal X-ray structure analyses reveal that both complexes have a tetranuclear [2 × 2] grid structure. 1 formed one-dimensional chains through intermolecular hydrogen bonds between the carboxylic acid units of neighboring grids, while 2 formed two-dimensional layers stabilized by π-π-stacking interactions. 1 showed spin transition between the 3HS-1LS and 1.5HS-2.5LS states around 200 K, while 2 showed spin-crossover between the 4LS and 2LS-2HS states above 300 K. A modified indium-tin oxide (ITO) electrode was fabricated by soaking the ITO in a solution of 1. The resultant electrode showed reversible redox waves attributed to the original redox processes of iron(II)/iron(III).

20.
IUCrJ ; 5(Pt 2): 158-165, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29765605

RESUMO

The crystal structure of the excitonic insulator Ta2NiSe5 has been investigated under a range of pressures, as determined by the complementary analysis of both single-crystal and powder synchrotron X-ray diffraction measurements. The monoclinic ambient-pressure excitonic insulator phase II transforms upon warming or under a modest pressure to give the semiconducting C-centred orthorhombic phase I. At higher pressures (i.e. >3 GPa), transformation to the primitive orthorhombic semimetal phase III occurs. This transformation from phase I to phase III is a pressure-induced first-order phase transition, which takes place through coherent sliding between weakly coupled layers. This structural phase transition is significantly influenced by Coulombic interactions in the geometric arrangement between interlayer Se ions. Furthermore, upon cooling, phase III transforms into the monoclinic phase IV, which is analogous to the excitonic insulator phase II. Finally, the excitonic interactions appear to be retained despite the observed layer sliding transition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...