Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(33): 15294-15310, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39112425

RESUMO

NNN-Bis(imino) pyridine-based pincer-Fe(II) complexes with an expected trigonal bipyramidal (TBP) geometry equilibrated to a rearranged ion pair of an octahedral dicationic Fe complex containing two bis(imino)pyridine ligands that are neutralized by a tetrahedral dianionic-[FeCl4]2-. Single-crystal X-ray diffraction (SCXRD), high-resolution mass spectrometry (HRMS), and UV-visible (UV-vis) studies suggested that the equilibrium was dictated by the sterics of the R group on the imine N, with the less-crowded groups tilting the equilibrium to the ion pair and the bulky ones favoring the TBP geometry. Electron paramagnetic resonance (EPR) and Evan's magnetic moment measurements indicated that the complexes were paramagnetic with Fe(II) in a high-spin state. In solution, over a period of 7 days, these Fe(II) complexes oxidized to a mixture of low-spin and high-spin Fe(III) species. These pincer-Fe(II) were found to be highly active toward the transformation of biodiesel waste glycerol to value-added lactic acid (LA). Particularly, (Ph2NNN)FeCl2 (0.1 mol %) gave 91% LA with a 99% selectivity at 140 °C using 1.2 equiv of NaOH. With 0.0001 mol % (Ph2NNN)FeCl2, very high turnovers (74% LA, 98% selectivity, 740 000 turnover number (TON) at 4405 turnovers per hour (TOs/h)) were obtained after 7 days. EPR indicated Fe(III) species to be the active catalyst, a few of which were detected by HRMS. Experiments with Hg are suggestive of the mostly homogeneous molecular nature of the catalyst with a minor contribution from heterogeneous Fe nanoparticles.

2.
Dalton Trans ; 53(30): 12698-12709, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39015088

RESUMO

Herein, a series of pincer-Mn complexes based on bis(imino)pyridine ligands of the type R2NNN (R = tBu, iPr, Cy and Ph) were synthesized and characterized using various spectroscopic techniques. SCXRD studies revealed a trigonal bipyramidal geometry around the metal center in all the complexes. EPR spectroscopy confirmed the presence of high-spin Mn(II) centers with the consistent observation of sextets in EPR spectra. Additionally, solution magnetic moment measurement exhibited values ranging from 5.8 to 6.2 BM for all the complexes, which are in accordance with the theoretical value of 5.92 BM. HRMS analysis complemented structural characterization, showing fragments corresponding to various solvent adducts and derivatives of the complexes. Subsequently, the synthesized complexes were investigated for their catalytic activity in the transfer dehydrogenation of glycerol to lactic acid in the presence of acetone. Among the considered complexes, the catalyst Ph2NNNMnCl2 was found to be highly efficient. Remarkably, a yield of 92% LA was observed with >99% selectivity at 0.5 mol% loading of Ph2NNNMnCl2 in the presence of 1 equivalent of NaOH at 140 °C in 24 h, surpassing the yield obtained from its precursor MnCl2·4H2O, where a yield of 72% LA was observed with 96% selectivity under similar reaction conditions. This catalytic system was further investigated with a range of acceptors, and good to moderate yields were observed in most cases. Moreover, several control experiments, including reaction with PPh3, CS2 and Hg, highlighted the major involvement of molecular species in the reaction medium. Deuterium labelling studies indicated the involvement of C-H bond activation in the catalytic cycle but not in the rate-determining step (RDS), with a secondary kinetic isotope effect (KIE) of 1.25.

3.
Chem Commun (Camb) ; 60(31): 4148-4169, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38563372

RESUMO

Hydrogen obtained from renewable sources such as water and alcohols is regarded as an efficient clean-burning alternative to non-renewable fuels. The use of the so-called bio-H2 regardless of its colour will be a significant step towards achieving global net-zero carbon goals. Challenges still persist however with conventional H2 storage, which include low-storage density and high cost of transportation apart from safety concerns. Global efforts have thus focussed on liquid organic hydrogen carriers (LOHCs), which have shown excellent potential for H2 storage while allowing safer large-scale transformation and easy on-site H2 generation. While water could be considered as the most convenient liquid inorganic hydrogen carrier (LIHC) on a long-term basis, the utilization of alcohols as LOHCs to generate on-demand H2 has tasted instant success. This has helped to draw a road-map of futuristic H2 storage and transportation. The current review brings to the fore the state-of-the-art developments in hydrogen generation from readily available, feed-agnostic bio-alcohols as LOHCs using molecular transition-metal catalysts.

4.
Inorg Chem ; 63(6): 3005-3018, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38300805

RESUMO

Homogeneous electrocatalytic systems based on readily available, earth-abundant, inexpensive base metals Ni, Co, and Cr have been formulated for the electro-oxidation of alcohols (methanol and ethanol) that constitute a key half-cell component of direct alcohol fuel cells (DAFCs). Notably, excellent results were obtained for both methanol as well as ethanol electro-oxidation while operating with a half-cell assembly based on all-non-noble working and counter electrode systems consisting of glassy carbon and graphite rod, respectively. Using NaOH as the supporting electrolyte, Ni/Co/Cr metal salts and their bis(iminopyridine) complexes have been used as anodic electrocatalysts for the alcohol half-cell reactions, and among them, catalytic systems based on Co outperformed the corresponding systems based on Ni and Cr. The system comprising CoCl2.·6H2O [10 mM] + NaOH [6 M] at room temperature emerged as the best electrocatalyst for both methanol [5 M] electro-oxidation (ca. 522.5 ± 13.5 mA cm-2 at 1.4 V) and ethanol [5 M] electro-oxidation (ca. 209 ± 25 mA cm-2 at 1.34 V). It was observed that regardless of the starting alcohol, the end product is carbon dioxide, all of which gets trapped as sodium carbonate (up to 97% yield), thereby mitigating any possible hazards of greenhouse gas emission. Inferences obtained from FETEM, FESEM, and EDS analysis of both the electrolyte solution and residues deposited on the electrode surface provide evidence for the mostly homogeneous nature of the reaction mixture with the molecular catalyst being the major contributor toward the electrocatalytic activity apart from the minor role played by trace heterogeneous particles. The current cell assembly operating with non-noble working and counter electrodes utilizing a catalytic system based on an earth-abundant, base metal salt/complex that not only results in good half-cell current densities for high-energy power-source DAFCs but also generates high-value sodium carbonate offers an exciting avenue.

5.
Chemistry ; 30(1): e202302686, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37811834

RESUMO

The dehydrogenation of glycerol to lactic acid (LA) under both acceptorless and transfer dehydrogenation conditions using readily available, inexpensive, environmentally benign and earth-abundant base metal salt CoCl2 is reported here. The CoCl2 (0.5 mol %) catalyzed acceptorless dehydrogenation of glycerol at 160 °C in the presence of 0.75 equiv. of KOH, gave up to 33 % yield of LA in 44 % selectivity apart from hydrogen. Alternatively, with acetone as a sacrificial hydrogen acceptor, the CoCl2 (0.5 mol %) catalyzed dehydrogenation of glycerol at 160 °C in the presence of 1.1 equiv. of NaOt Bu resulted in up to 93 % LA with 96 % selectivity along with another value-added product isopropanol. Labelling studies revealed a modest secondary KIE of 1.68 which points to the involvement of C-H bond activation as a part of the catalytic cycle but not as a part of the rate-determining step. Catalyst poisoning experiments with PPh3 and CS2 are indicative of the homogeneous nature of the reaction mixture involving molecular species that are likely to be in-situ formed octahedral Co(II) as inferred from EPR, HRMS and Evans magnetic moment studies. The net transfer dehydrogenation activity is attributed to exclusive contribution from the alcoholysis step.

6.
J Am Chem Soc ; 145(33): 18296-18306, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37552857

RESUMO

The para-N-pyridyl-based PCP pincer proligand 3,5-bis(di-tert-butylphosphinomethyl)-2,6-dimethylpyridine (pN-tBuPCP-H) was synthesized and metalated to give the iridium complex (pN-tBuPCP)IrHCl (2-H). In marked contrast with its phenyl-based congeners, e.g., (tBuPCP)IrHCl and derivatives, 2-H is highly air-sensitive and reacts with oxidants such as ferrocenium, trityl cation, and benzoquinone. These oxidations ultimately lead to intramolecular activation of a phosphino-t-butyl C(sp3)-H bond and cyclometalation. Considering the greater electronegativity of N than C, 2-H is expected to be less easily oxidized than simple PCP derivatives; cyclic voltammetry and DFT calculations support this expectation. However, 2-H is calculated to undergo metal-ligand-proton tautomerism (MLPT) to give an N-protonated complex that can be described with resonance forms representing a zwitterionic complex (with a negative charge on Ir) and a p-N-pyridylidene (a remote N-heterocyclic carbene) Ir(I) complex. One-electron oxidation of this tautomer is calculated to be dramatically more favorable than direct oxidation of 2-H (ΔΔG° = -31.3 kcal/mol). The resulting Ir(II) oxidation product is easily deprotonated to give metalloradical 2• which is observed by NMR spectroscopy. 2• can be further oxidized to give cationic Ir(III) complex, 2+, which can oxidatively add a phosphino-t-butyl C-H bond and undergo deprotonation to give the observed cyclometalated product. DFT calculations indicate that less sterically hindered analogues of 2+ would preferentially undergo intermolecular addition of C(sp3)-H bonds, for example, of n-alkanes. The resulting iridium alkyl complexes could undergo facile ß-H elimination to afford olefin, thereby completing a catalytic cycle for alkane dehydrogenation driven by one-electron oxidation and deprotonation, enabled by MLPT.

7.
ACS Omega ; 8(19): 16907-16926, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37214732

RESUMO

The multifold Sonogashira coupling of a class of aryl halides with arylacetylene in the presence of an equivalent of Cs2CO3 has been accomplished using a combination of Pd(CH3CN)2Cl2 (0.5 mol %) and cataCXium A (1 mol %) under copper-free and amine-free conditions in a readily available green solvent at room temperature. The protocol was used to transform several aryl halides and alkynes to the corresponding coupled products in good to excellent yields. The rate-determining step is likely to involve the oxidative addition of Ar-X. The green protocol provides access to various valuable polycyclic aromatic hydrocarbons (PAHs) with exciting photophysical properties. Among them, six tetraalkynylated anthracenes have been tested for their anticancer properties on the human triple-negative breast cancer (TNBC) cell line MDA-MB-231 and human dermal fibroblasts (HDFs). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to find out the IC50 concentration and lethal dose. The compounds being intrinsically fluorescent, their cellular localization was checked by live cell fluorescence imaging. 4',6-Diamidino-2-phenylindole (DAPI) and propidium iodide (PI) staining was performed to check apoptosis and necrosis, respectively. All of these studies have shown that anthracene and its derivatives can induce cell death via DNA damage and apoptosis.

8.
Org Biomol Chem ; 19(44): 9692-9704, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34724016

RESUMO

For the first time, a direct single-step one-pot route to access nine new symmetric tetraalkynylated anthracenes via Pd(CH3CN)2Cl2/cataCXium®A catalyzed tetra-fold Sonogashira coupling is reported. Five of these tetraalkynylated anthracenes have been crystallographically characterized, with two of them exhibiting multiple interactions that significantly shorten the inter-planar distances in the solid-state structure. The rich photophysical properties exhibited by these molecules hold immense promise for future applications in sensors and optoelectronic devices. Two of the considered tetraalkynylated anthracenes comprising a D-π-A-π-D motif demonstrate solvatochromism and halochromism, with one of them showing a low bandgap of 1.79 eV. The remaining compounds demonstrate bandgaps in the range of 1.79-2.04 eV.

9.
J Comput Chem ; 42(24): 1728-1735, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34196021

RESUMO

The current study dwells upon the efforts to computationally probe a phosphine-free pincer-nickel complex that would demonstrate an efficiency better than the reported phosphine-based pincer-nickel complex (iPr2 POCNEt2 )Ni(CH2 CN) for cyanomethylation reaction. For this purpose, the mechanism of cyanomethylation of benzaldehyde was studied quantum mechanically for a series of 11 pincer-nickel complexes. The energetics of various intermediates and transition states involved in the catalytic cycle for each catalyst was compared with the corresponding energetics of the Miller's catalyst (iPr2 POCNEt2 )Ni(CH2 CN) that is reported to accomplish the cyanomethylation at room temperature. While pincer complexes (iPr4 NNN)Ni(CH2 CN) and (iPr4 NCN)Ni(CH2 CN) containing strong σ-donating amines were found to fare poorly, pincer-nickel complexes (iPr2 NCN)Ni(CH2 CN) and (dm PheboxNCN)Ni(CH2 CN) based on weaker σ-donating imines had energetics more favorable than the reported efficient catalyst (iPr2 POCNEt2 )Ni(CH2 CN). While strong trans-influencing C as the pincer central atom was found to be pivotal for lowering the cyanomethylation kinetics, presence of a poor trans-influencing N proved to be detrimental on the overall energetics.

10.
Inorg Chem ; 60(10): 7422-7432, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33909427

RESUMO

The synthesis and characterization of chiral pincer-ruthenium complexes of the type (R2NNN)RuCl2 (PPh3) (R = 3-methylbutyl and 3,3-dimethylbutyl) is reported here. The cytotoxicity studies of these complexes were studied and compared with the corresponding activity of achiral complexes. The cytotoxic effect of pincer-ruthenium complexes on human dermal fibroblasts and human tongue carcinoma cells assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay displayed an inhibition of normal and cancer cell growth in a dose-dependent manner. Intracellular reactive oxygen species (ROS) level measurement, lactate dehydrogenase assay, DNA fragmentation, and necrosis studies revealed that treatment with pincer-ruthenium complexes induced a redox imbalance in SAS cells by upregulating ROS generation and caused necrotic cell death by disrupting the cellular membrane integrity.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Rutênio/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo , Rutênio/química
11.
Dalton Trans ; 50(10): 3394-3428, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33595564

RESUMO

Organometallic catalysts have played a key role in accomplishing numerous synthetically valuable organic transformations that are either otherwise not possible or inefficient. The use of precious, sparse and toxic 4d and 5d metals are an apparent downside of several such catalytic systems despite their immense success over the last several decades. The use of complexes containing Earth-abundant, inexpensive and less hazardous 3d metals, such as nickel, as catalysts for organic transformations has been an emerging field in recent times. In particular, the versatile nature of the corresponding pincer-metal complexes, which offers great control of their reactivity via countless variations, has garnered great interest among organometallic chemists who are looking for greener and cheaper alternatives. In this context, the current review attempts to provide a glimpse of recent developments in the chemistry of pincer-nickel catalyzed reactions. Notably, there have been examples of pincer-nickel catalyzed reactions involving two electron changes via purely organometallic mechanisms that are strikingly similar to those observed with heavier Pd and Pt analogues. On the other hand, there have been distinct differences where the pincer-nickel complexes catalyze single-electron radical reactions. The applicability of pincer-nickel complexes in catalyzing cross-coupling reactions, oxidation reactions, (de)hydrogenation reactions, dehydrogenative coupling, hydrosilylation, hydroboration, C-H activation and carbon dioxide functionalization has been reviewed here from synthesis and mechanistic points of view. The flurry of global pincer-nickel related activities offer promising avenues in catalyzing synthetically valuable organic transformations.

12.
Chem Commun (Camb) ; 56(68): 9886-9889, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32720651

RESUMO

The conversion of glycerol selectively to lactic acid has been accomplished in high yields (ca. 90%) by using a NNN pincer-Ru catalyst. DFT explains the role of the Ru-P bond and sterics in favoring the catalysis.


Assuntos
Glicerol/química , Ácido Láctico/química , Rutênio/química , Catálise , Complexos de Coordenação/química , Teoria da Densidade Funcional , Glicerol/metabolismo , Ácido Láctico/metabolismo , Conformação Molecular , Desidrogenase do Álcool de Açúcar/metabolismo , Termodinâmica
13.
Chem Rev ; 117(19): 12357-12384, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28952312

RESUMO

The alkyl group is the most common component of organic molecules and the most difficult to selectively functionalize. The development of catalysts for dehydrogenation of alkyl groups to give the corresponding olefins could open almost unlimited avenues to functionalization. Homogeneous systems, or more generally systems based on molecular (including solid-supported) catalysts, probably offer the greatest potential for regio- and chemoselective dehydrogenation of alkyl groups and alkanes. The greatest progress to date in this area has been achieved with pincer-ligated transition-metal-based catalysts; this and related chemistry are the subject of this review. Chemists are still far from achieving the most obvious and perhaps most attractive goal in this area, the dehydrogenation of simple alkanes to yield alkenes (specifically monoenes) with high yield and selectivity. Greater progress has been made with tandem catalysis and related approaches in which the initial dehydrogenated product undergoes a desirable secondary reaction. Also reviewed is the substantial progress that has been made in the closely related area of dehydrogenation of alkyl groups of substrates containing heteroatoms.

14.
J Am Chem Soc ; 139(18): 6338-6350, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28418249

RESUMO

NaBArF4 (sodium tetrakis[(3,5-trifluoromethyl)phenyl]borate) was found to catalyze reactions of (Phebox)IrIII(acetate) (Phebox = 2,6-bis(4,4-dimethyloxazolinyl)-3,5-dimethylphenyl) complexes, including (i) ß-H elimination of (Phebox)Ir(OAc)(n-alkyl) to give (Phebox)Ir(OAc)(H) and the microscopic reverse, alkene insertion into the Ir-H bond of (Phebox)Ir(OAc)(H), and (ii) hydrogenolysis of the Ir-alkyl bond of (Phebox)Ir(OAc)(n-alkyl) and the microscopic reverse, C-H activation by (Phebox)Ir(OAc)(H), as indicated by H/D exchange experiments. For example, ß-H elimination of (Phebox)Ir(OAc)(n-octyl) (2-Oc) proceeded on a time scale of minutes at -15 °C in the presence of (0.4 mM) NaBArF4 as compared with a very slow reaction at 125 °C in the absence of NaBArF4. In addition to NaBArF4, other Lewis acids are also effective. Density functional theory calculations capture the effect of the Na+ cation and indicate that it operates primarily by promoting κ2-κ1 dechelation of the acetate anion, which opens the coordination site needed to allow the observed reaction to proceed. In accord with the effect on these individual stoichiometric reactions, NaBArF4 was also found to cocatalyze, with (Phebox)Ir(OAc)(H), the acceptorless dehydrogenation of n-dodecane.

15.
J Am Chem Soc ; 137(31): 9894-911, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26200219

RESUMO

We report the transfer-dehydrogenation of gas-phase alkanes catalyzed by solid-phase, molecular, pincer-ligated iridium catalysts, using ethylene or propene as hydrogen acceptor. Iridium complexes of sterically unhindered pincer ligands such as (iPr4)PCP, in the solid phase, are found to give extremely high rates and turnover numbers for n-alkane dehydrogenation, and yields of terminal dehydrogenation product (α-olefin) that are much higher than those previously reported for solution-phase experiments. These results are explained by mechanistic studies and DFT calculations which jointly lead to the conclusion that olefin isomerization, which limits yields of α-olefin from pincer-Ir catalyzed alkane dehydrogenation, proceeds via two mechanistically distinct pathways in the case of ((iPr4)PCP)Ir. The more conventional pathway involves 2,1-insertion of the α-olefin into an Ir-H bond of ((iPr4)PCP)IrH2, followed by 3,2-ß-H elimination. The use of ethylene as hydrogen acceptor, or high pressures of propene, precludes this pathway by rapid hydrogenation of these small olefins by the dihydride. The second isomerization pathway proceeds via α-olefin C-H addition to (pincer)Ir to give an allyl intermediate as was previously reported for ((tBu4)PCP)Ir. The improved understanding of the factors controlling rates and selectivity has led to solution-phase systems that afford improved yields of α-olefin, and provides a framework required for the future development of more active and selective catalytic systems.

16.
Chem Asian J ; 5(8): 1830-7, 2010 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-20564277

RESUMO

The reactivity of Grignard reagents towards imines in the presence of catalytic and stoichiometric amounts of titanium alkoxides is reported. Alkylation, reduction, and coupling of imines take place. Whereas reductive coupling is the major reaction in stoichiometric reactions, alkylation is favored in catalytic reactions. Mechanistic studies clearly indicate that intermediates involved in the two reactions are different. Catalytic reactions involve a metal-alkyl complex. This has been confirmed by reactions of deuterium-labeled substrates and different alkylating agents. Under the stoichiometric conditions, however, titanium olefin complexes are formed through reductive elimination, probably through a multinuclear intermediate.


Assuntos
Iminas/química , Compostos Organometálicos/química , Alquilação , Catálise , Marcação por Isótopo , Espectroscopia de Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA