Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Brief Bioinform ; 22(1): 270-287, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-31950981

RESUMO

Rab proteins represent the largest family of the Rab superfamily guanosine triphosphatase (GTPase). Aberrant human Rab proteins are associated with multiple diseases, including cancers and neurological disorders. Rab subfamily members display subtle conformational variations that render specificity in their physiological functions and can be targeted for subfamily-specific drug design. However, drug discovery efforts have not focused much on targeting Rab allosteric non-nucleotide binding sites which are subjected to less evolutionary pressures to be conserved, hence are likely to offer subfamily specificity and may be less prone to undesirable off-target interactions and side effects. To discover druggable allosteric binding sites, Rab structural dynamics need to be first incorporated using multiple experimentally and computationally obtained structures. The high-dimensional structural data may necessitate feature extraction methods to identify manageable representative structures for subsequent analyses. We have detailed state-of-the-art computational methods to (i) identify binding sites using data on sequence, shape, energy, etc., (ii) determine the allosteric nature of these binding sites based on structural ensembles, residue networks and correlated motions and (iii) identify small molecule binders through structure- and ligand-based virtual screening. To benefit future studies for targeting Rab allosteric sites, we herein detail a refined workflow comprising multiple available computational methods, which have been successfully used alone or in combinations. This workflow is also applicable for drug discovery efforts targeting other medically important proteins. Depending on the structural dynamics of proteins of interest, researchers can select suitable strategies for allosteric drug discovery and design, from the resources of computational methods and tools enlisted in the workflow.


Assuntos
Sítio Alostérico , Biologia Computacional/métodos , Descoberta de Drogas/métodos , Proteínas rab de Ligação ao GTP/química , Animais , Desenho de Fármacos , Humanos , Proteínas rab de Ligação ao GTP/metabolismo
2.
Curr Drug Targets ; 20(16): 1680-1694, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31333136

RESUMO

Amylin is a neuroendocrine peptide hormone secreted by pancreatic ß-cells; however, amylin is toxic to ß-cells when it is aggregated in type 2 diabetes mellitus (T2DM). It is important to understand amylin's structures and aggregation mechanism for the discovery and design of effective drugs to inhibit amylin aggregation. In this review, we investigated experimental and computational studies on amylin structures and inhibitors. Our review provides some novel insights into amylin, particularly for the design of its aggregation inhibitors to treat T2DM. We detailed the potential inhibitors that have been studied hitherto and highlighted the neglected need to consider different amylin attributes that depend on the presence/absence of physiologically relevant conditions, such as membranes. These conditions and the experimental methods can greatly influence the results of studies on amylininhibitor complexes. Text-mining over 3,000 amylin-related PubMed abstracts suggests the combined therapeutic potential of amylin with leptin and glucagon-like peptide-1, which are two key hormones in obesity. The results also suggest that targeting amylin aggregation can contribute to therapeutic efforts for Alzheimer's disease (AD). Therefore, we have also reviewed the role of amylin in other conditions including obesity and AD. Finally, we provided insights for designing inhibitors of different types (small molecules, proteins, peptides/mimetics, metal ions) to inhibit amylin aggregation.


Assuntos
Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Agregados Proteicos/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Hormônios Peptídicos/metabolismo
3.
PLoS One ; 13(6): e0198632, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29874286

RESUMO

Rab11 is an important protein subfamily in the RabGTPase family. These proteins physiologically function as key regulators of intracellular membrane trafficking processes. Pathologically, Rab11 proteins are implicated in many diseases including cancers, neurodegenerative diseases and type 2 diabetes. Although they are medically important, no previous study has found Rab11 allosteric binding sites where potential drug candidates can bind to. In this study, by employing multiple clustering approaches integrating principal component analysis, independent component analysis and locally linear embedding, we performed structural analyses of Rab11 and identified eight representative structures. Using these representatives to perform binding site mapping and virtual screening, we identified two novel binding sites in Rab11 and small molecules that can preferentially bind to different conformations of these sites with high affinities. After identifying the binding sites and the residue interaction networks in the representatives, we computationally showed that these binding sites may allosterically regulate Rab11, as these sites communicate with switch 2 region that binds to GTP/GDP. These two allosteric binding sites in Rab11 are also similar to two allosteric pockets in Ras that we discovered previously.


Assuntos
Regulação Alostérica , Sítio Alostérico , Simulação de Acoplamento Molecular , Proteínas rab de Ligação ao GTP/química , Cristalografia por Raios X , Guanosina Difosfato/química , Guanosina Trifosfato/química , Ligantes , Ligação Proteica , Estrutura Terciária de Proteína
4.
Proteins ; 86(3): 301-321, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29235148

RESUMO

Catalytic proteins such as human protein tyrosine phosphatase 1B (PTP1B), with conserved and highly polar active sites, warrant the discovery of druggable nonactive sites, such as allosteric sites, and potentially, therapeutic small molecules that can bind to these sites. Catalyzing the dephosphorylation of numerous substrates, PTP1B is physiologically important in intracellular signal transduction pathways in diverse cell types and tissues. Aberrant PTP1B is associated with obesity, diabetes, cancers, and neurodegenerative disorders. Utilizing clustering methods (based on root mean square deviation, principal component analysis, nonnegative matrix factorization, and independent component analysis), we have examined multiple PTP1B structures. Using the resulting representative structures in different conformational states, we determined consensus clustroids and used them to identify both known and novel binding sites, some of which are potentially allosteric. We report several lead compounds that could potentially bind to the novel PTP1B binding sites and can be further optimized. Considering the possibility for drug repurposing, we discovered homologous binding sites in other proteins, with ligands that could potentially bind to the novel PTP1B binding sites.


Assuntos
Domínio Catalítico , Inibidores Enzimáticos/química , Conformação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Regulação Alostérica , Sítio Alostérico , Sequência de Aminoácidos , Sítios de Ligação/genética , Inibidores Enzimáticos/metabolismo , Humanos , Cinética , Ligantes , Modelos Moleculares , Mutação , Análise de Componente Principal , Ligação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo
5.
Bioinformation ; 9(16): 824-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24143053

RESUMO

Feature selection from DNA microarray data is a major challenge due to high dimensionality in expression data. The number of samples in the microarray data set is much smaller compared to the number of genes. Hence the data is improper to be used as the training set of a classifier. Therefore it is important to select features prior to training the classifier. It should be noted that only a small subset of genes from the data set exhibits a strong correlation with the class. This is because finding the relevant genes from the data set is often non-trivial. Thus there is a need to develop robust yet reliable methods for gene finding in expression data. We describe the use of several hybrid feature selection approaches for gene finding in expression data. These approaches include filtering (filter out the best genes from the data set) and wrapper (best subset of genes from the data set) phases. The methods use information gain (IG) and Pearson Product Moment Correlation (PPMC) as the filtering parameters and biogeography based optimization (BBO) as the wrapper approach. K nearest neighbour algorithm (KNN) and back propagation neural network are used for evaluating the fitness of gene subsets during feature selection. Our analysis shows that an impressive performance is provided by the IG-BBO-KNN combination in different data sets with high accuracy (>90%) and low error rate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA