Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Biol Int ; 48(6): 759-776, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38499517

RESUMO

Pancreatic development is orchestrated by timely synthesis and degradation of stage-specific transcription factors (TFs). The transition from one stage to another stage is dependent on the precise expression of the developmentally relevant TFs. Persistent expression of particular TF would impede the exit from the progenitor stage to the matured cell type. Intracellular protein degradation-mediated protein turnover contributes to a major extent to the turnover of these TFs and thereby dictates the development of different tissues. Since even subtle changes in the crucial cellular pathways would dramatically impact pancreatic ß-cell performance, it is generally acknowledged that the biological activity of these pathways is tightly regulated by protein synthesis and degradation process. Intracellular protein degradation is executed majorly by the ubiquitin proteasome system (UPS) and Lysosomal degradation pathway. As more than 90% of the TFs are targeted to proteasomal degradation, this review aims to examine the crucial role of UPS in normal pancreatic ß-cell development and how dysfunction of these pathways manifests in metabolic syndromes such as diabetes. Such understanding would facilitate designing a faithful approach to obtain a therapeutic quality of ß-cells from stem cells.


Assuntos
Diabetes Mellitus , Células Secretoras de Insulina , Complexo de Endopeptidases do Proteassoma , Proteólise , Células Secretoras de Insulina/metabolismo , Humanos , Diabetes Mellitus/metabolismo , Animais , Complexo de Endopeptidases do Proteassoma/metabolismo , Fatores de Transcrição/metabolismo , Diferenciação Celular , Ubiquitina/metabolismo , Lisossomos/metabolismo
2.
iScience ; 26(5): 106771, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37250303

RESUMO

Loss of insulin-secreting ß-cells in diabetes may be either due to apoptosis or dedifferentiation of ß-cell mass. The ubiquitin-proteasome system comprising E3 ligase and deubiquitinases (DUBs) controls several aspects of ß-cell functions. In this study, screening for key DUBs identified USP1 to be specifically involved in dedifferentiation process. Inhibition of USP1 either by genetic intervention or small-molecule inhibitor ML323 restored epithelial phenotype of ß-cells, but not with inhibition of other DUBs. In absence of dedifferentiation cues, overexpression of USP1 was sufficient to induce dedifferentiation in ß-cells; mechanistic insight showed USP1 to mediate its effect via modulating the expression of inhibitor of differentiation (ID) 2. In an in vivo streptozotocin (STZ)-induced dedifferentiation mouse model system, administering ML323 alleviated hyperglycemic state. Overall, this study identifies USP1 to be involved in dedifferentiation of ß-cells and its inhibition may have a therapeutic application of reducing ß-cell loss during diabetes.

3.
Curr Diabetes Rev ; 19(6): e190522205030, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35598235

RESUMO

Distinct molecular processes are engaged during histogenesis, and Epithelial to Mesenchymal Transition (EMT) is one of the key evolutionarily conserved processes that facilitates organ development. Molecular pathways governing EMT are embedded within developmental programs and operate in cells of different tissues. Among varied cell types, EMT in pancreatic ß-cells is of greater interest as the existence of EMT in these cells is highly debated. Although in vitro generation of human islet-derived mesenchymal progenitor cells has been proven beyond doubt, the existence of EMT in pancreatic ß-cells in vivo remains enigmatic. Understanding the in-depth process of EMT in in vivo human ß-cells is challenged by the limitations of lineage-tracing studies, which are otherwise feasible in mice. Exploring EMT of ß-cells would greatly facilitate the generation of clinically relevant ß-cells either by enhancing long-term in vitro culture of endogenous islets or by differentiation of pluripotent stem cells to mature ß-cells. This review is an update on the recent progress in understanding the EMT process of ß-cells and how the investigations have helped to resolve the mystery of the existence of EMT in pancreatic ß-cells.


Assuntos
Diabetes Mellitus , Células Secretoras de Insulina , Ilhotas Pancreáticas , Camundongos , Humanos , Animais , Transição Epitelial-Mesenquimal , Diferenciação Celular , Diabetes Mellitus/metabolismo
4.
Int J Biochem Cell Biol ; 149: 106256, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35772664

RESUMO

Pluripotent stem cell derived-hepatocytes depict fetal -hepatocyte characteristics/maturity and are immunogenic limiting their applications. Attempts have been made to derive hepatocytes from mesenchymal stem cells using developmental cocktails, epigenetic modulators and small molecules. However, achieving a stable terminally differentiated functional state had been a challenge. Inefficient hepatic differentiation could be due to lineage restrictions set during development. Hence a novel lineage reprogramming approach has been utilized to confer competence to adipose-mesenchymal stem cells (ADMSCs) to efficiently respond to hepatogenic cues and achieve a stable functional hepatic state. Lineage reprogramming involved co-transduction of ADMSCs with hepatic endoderm pioneer Transcription factor (TF)-FOXA2, HHEX-a homeobox gene and HNF4α-master TF indispensable for hepatic state maintenance. Lineage priming was evidenced by endogenous HFN4α promoter demethylation and robust responsiveness to minimal hepatic maturation cues. Induced hepatocytes (i-Heps) exhibited mesenchymal-to-epithelial transition and terminal hepatic signatures. Functional characterisation of i-Heps for hepatic drug detoxification systems, xenobiotic uptake/clearance, metabolic status and hepatotropic virus entry validated acquisition of stable hepatic state and junctional maturity Exhaustive analysis of MSC memory in i-Heps indicated loss of MSC-immunophenotype and terminal differentiation to osteogenic/adipogenic lineages. Importantly, i-Heps suppressed phytohemagglutinin-induced T-cell blasts, inhibited allogenic mixed-lymphocyte reactions (MLRs) and secreted immunomodulatory- indoleamine 2,3-dioxygenase in T-cell blast co-cultures akin to native ADMSCs. In a nutshell, the present study identifies a novel cocktail of TFs that reprogram ADMSCs to stable hepatic state. i-Heps exhibit adult hepatocyte functional maturity with robust immune-modulatory abilities rendering suitability for rigorous drug testing, hepatocyte-pathogen interaction studies and transplantation in allogenic settings.


Assuntos
Hepatócitos , Células-Tronco Mesenquimais , Tecido Adiposo , Adulto , Diferenciação Celular/fisiologia , Células Cultivadas , Hepatócitos/metabolismo , Humanos
5.
Curr Protein Pept Sci ; 23(9): 602-618, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35466872

RESUMO

Impairment in the function of insulin-producing pancreatic ß-cells is a hallmark of both type 1 and 2 diabetes (T1D/T2D). Despite over a century of effort, there is still no precise treatment regimen available for acute diabetes. Enhancing the endogenous ß-cells either by protecting them from apoptosis or dedifferentiation is a classic alternative to retaining the ß-cell pool. Recent reports have acknowledged the protein homeostasis mediated by the ubiquitin-proteasome system as one of the essential components in maintaining the ß-cell pool. Degradation of the targeted substrate by the proteasome is majorly regulated by the ubiquitination status of the targeted protein dictated by E3 ligases and deubiquitinase enzymes. Imbalance in the function of these enzymes results in the malfunction of ß-cells and, subsequently, hyperglycemia. Ubiquitination involves the covalent attachment of one or more ubiquitin moieties to the target protein by E3 ubiquitin ligases and deubiquitinases (DUBs) are the enzymes that antagonize the action of E3 ligases. Knowing different E3 ligases and deubiquitinases in the process of differentiation and dedifferentiation of ß-cells probably paves the way for designing novel modulators that enhance either the differentiation or abate the dedifferentiation process. In this review, we will discuss the importance of the balanced ubiquitination process, an understanding of which would facilitate the restraining of ß-cells from exhaustion.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitinação , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Enzimas Desubiquitinantes/genética , Enzimas Desubiquitinantes/metabolismo
6.
Front Cell Dev Biol ; 10: 793694, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35198558

RESUMO

The impact of immune system and inflammation on organ homeostasis and tissue stem cell niches in the absence of pathogen invasion has long remained a conundrum in the field of regenerative medicine. The paradoxical role of immune components in promoting tissue injury as well as resolving tissue damage has complicated therapeutic targeting of inflammation as a means to attain tissue homeostasis in degenerative disease contexts. This confound could be resolved by an integrated intricate assessment of cross-talk between inflammatory components and micro- and macro-environmental factors existing in tissues during health and disease. Prudent fate choice decisions of stem cells and their differentiated progeny are key to maintain tissue integrity and function. Stem cells have to exercise this fate choice in consultation with other tissue components. With this respect tissue immune components, danger/damage sensing molecules driving sterile inflammatory signaling cascades and barrier cells having immune-surveillance functions play pivotal roles in supervising stem cell decisions in their niches. Stem cells learn from their previous damage encounters, either endogenous or exogenous, or adapt to persistent micro-environmental changes to orchestrate their decisions. Thus understanding the communication networks between stem cells and immune system components is essential to comprehend stem cell decisions in endogenous tissue niches. Further the systemic interactions between tissue niches integrated through immune networks serve as patrolling systems to establish communication links and orchestrate micro-immune ecologies to better organismal response to injury and promote regeneration. Understanding these communication links is key to devise immune-centric regenerative therapies. Thus the present review is an integrated attempt to provide a unified purview of how inflammation and immune cells provide guidance to stem cells for tissue sculpting during development, organismal aging and tissue crisis based on the current knowledge in the field.

7.
Life Sci ; 264: 118701, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33130086

RESUMO

AIMS: Deriving canine-induced pluripotent stem cells (ciPSCs) have paved the way for developing novel cell-based disease models and transplantation therapies in the dog. Though ciPSCs have been derived in the presence of Leukemia inhibitory factor (LIF) as well in the presence of basic fibroblast growth factor (bFGF), the positioning of ciPSCs in the naïve or the primed state of pluripotency remains elusive. This study aims to understand whether canine iPSCs belong to naïve or prime state in comparison to mouse (m) iPSCs and human (h) iPSCs. MAIN METHODS: In the present study, we derived ciPSCs in presence of LIF and compared their state of pluripotency with that of miPSCs and hiPSCs by culturing them in the presence of LIF, bFGF, and LIF + bFGF. Gene expression level at transcript level was performed by RT-PCR and qRT-PCR and at the protein level was analysed by immunofluorescence. We also attempted to understand the pluripotency state using lipid body analysis by bodipy staining and blue fluorescence emission. KEY FINDINGS: In contrast to miPSCs, the naïve pluripotent stem cells, ciPSCs showed the expression of FGF5 similar to that of primed pluripotent stem cell, hiPSCs. Compared to miPSCs, ciPSCs cultured in presence of LIF showed enhanced expression of primed pluripotent marker FGF5, similar to hiPSCs cultured in presence of bFGF. Upon culturing in hiPSC culture condition, ciPSCs showed enhanced expression of core pluripotency genes compared to miPSCs cultured in similar condition. However, ciPSCs expressed naïve pluripotent marker SSEA1 similar to miPSCs and lacked the expression of primed state marker SSEA4 unlike hiPSCs. Interestingly, for the first time, we demonstrate the ciPSC pluripotency using lipid body analysis wherein ciPSCs showed enhanced bodipy staining and blue fluorescence emission, reflecting the primed state of pluripotency. ciPSCs expressed higher levels of fatty acid synthase (FASN), the enzyme involved in the synthesis of palmitate, similar to that of hiPSCs and higher than that of miPSCs. As ciPSCs exhibit characteristic properties of both naïve and primed pluripotent state, it probably represents a unique intermediary state of pluripotency that is distinct from that of mice and human pluripotent stem cells. SIGNIFICANCE: Elucidating the pluripotent state of ciPSCs assists in better understanding of the reprogramming events and development in different species. The study would provide a footprint of species-specific differences involved in reprogramming and the potential implication of iPSCs as a tool to analyse evolution.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Animais , Células Cultivadas , Reprogramação Celular/efeitos dos fármacos , Cães , Fluorescência , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Fator Inibidor de Leucemia/farmacologia , Lipídeos/química , Camundongos
8.
iScience ; 23(10): 101564, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33083732

RESUMO

Studies revealing molecular mechanisms underlying neural specification have majorly focused on the role played by different transcription factors, but less on non-nuclear components. Earlier, we reported mitochondrial superoxide dismutase (SOD2) to be essential for self-renewal and pluripotency of mouse embryonic stem cells (mESCs). In the present study, we found SOD2 to be specifically required for neural lineage, but not the meso- or endoderm specification. Temporally, SOD2 regulated early neural genes, but not the matured genes, by modulating mitochondrial dynamics-specifically by enhancing the mitochondrial fusion protein Mitofusin 2 (MFN2). Bio-complementation strategy further confirmed SOD2 to enhance mitochondrial fusion process independent of its antioxidant activity. Over-expression of SOD2 along with OCT4, but neither alone, transdifferentiated mouse fibroblasts to neural progenitor-like colonies, conclusively proving the neurogenic potential of SOD2. In conclusion, our findings accredit a novel role for SOD2 in early neural lineage specification.

9.
Med Hypotheses ; 143: 110062, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32652429

RESUMO

Parkinson's disease (PD) is a late-onset degenerative neuronal disorder and stands second among the neurological disorders with 1% of the total world population being affected. The disease originates majorly due to compromised function of the dopaminergic (DA) neurons in the Substantia Nigra pars compacta (SNpc), but not the ventral tegmental area (VTA) region of the midbrain. The differential susceptibility for degeneration is majorly attributed to morphological, molecular, and electrophysiological heterogeneity existing in DA neurons of SNpc and VTA. Long-range axonal arborization and a higher number of synapses in SNpc DA neurons make it more vulnerable compared to VTA DA neurons. Studies have shown that a decrease in such axonal arborization places DA neurons at decreased risk in PD. The two well established underlying mechanisms are a) As arborization is an energy-demanding process, increased redistribution of mitochondria to the axonal terminals occurs to satisfy the bioenergetic requirement b) The stabilization of axon-promoting factors at the axonal tip is an essential component for enhancing the arborization process. Interfering with any of these two processes would probably alleviate the degeneration of SNpc DA neurons. To accomplish the decreased stability of arborizing factors and thereby increase the resilience of SNpc DA neurons, we hypothesize the activation of anterograde transport-dependent recruitment of proteasomes to axon terminals as one of the most favorable approaches. Understanding this putative avenue of enhancing proteasomal activity and migration to the axonal tip could provide insight into the progression of neurodegeneration in PD and possibly offer a novel therapeutic strategy.


Assuntos
Doença de Parkinson , Parte Compacta da Substância Negra , Neurônios Dopaminérgicos , Humanos , Mesencéfalo , Substância Negra , Área Tegmentar Ventral
10.
Exp Cell Res ; 377(1-2): 94-102, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30796892

RESUMO

The path-breaking discovery of induced pluripotent stem cells has fuelled the scientific advancements of stem cells. Nevertheless, the need to ensure the safety of stem cell therapy at translational level is still at large, prompting scientists to use animal models which are genetically and anatomically homologous to that of humans. Dogs, being genomically and physiologically more similar to humans serve as better models in mimicking human diseases as compared to rodents. The heterogeneity in canine breeds offers an excellent opportunity to comprehend the complexities of many genetic diseases, making them exceptional tools for stem cell therapies. Various canine gene therapy models have paved the foundation for strategizing therapies for humans. But a similar progress is lacking in utilizing canine stem cells for stem cell-based therapies in both dogs and humans. This review attempts to bridge the gap, by articulating the key differences in canine pluripotency pathways, based on the recent derivation of canine embryonic stem cells (cESCs) and canine induced pluripotent stem cells (ciPSCs), thereby attempting to position dog in the reprogramming landscape. The potential clinical application of canine iPSCs also offers great hope to canine patients and might lead to significant contributions in veterinary medicine.


Assuntos
Diferenciação Celular , Reprogramação Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes/citologia , Transplante de Células-Tronco , Animais , Modelos Animais de Doenças , Cães , Humanos , Transplante Heterólogo
11.
Mol Neurobiol ; 55(5): 4267-4279, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28623616

RESUMO

Differentiation of pluripotent stem cells (PSCs) to neural lineages has gathered huge attention in both basic research and regenerative medicine. The major hurdle lies in the efficiency of differentiation and identification of small molecules that facilitate neurogenesis would partly circumvent this limitation. The small molecule Cyclosporine A (CsA), a commonly used immunosuppressive drug, has been shown to enhance in vivo neurogenesis. To extend the information to in vitro neurogenesis, we examined the effect of CsA on neural differentiation of PSCs. We found CsA to increase the expression of neural progenitor genes during early neural differentiation. Gene silencing approach revealed CsA-mediated neural induction to be dependent on blocking the Ca2+-activated phosphatase calcineurin (Cn) signaling. Similar observation with FK506, an independent inhibitor of Cn, further strengthened the necessity of blocking Cn for enhanced neurogenesis. Surprisingly, mechanistic insight revealed Cn-inhibition dependent upregulation of IL-6 protein to be necessary for CsA-mediated neurogenesis. Together, these findings provide a comprehensive understanding of the role of CsA in neurogenesis, thus suggesting a method for obtaining large numbers of neural progenitors from PSCs for possible transplantation.


Assuntos
Ciclosporina/farmacologia , Interleucina-6/metabolismo , Neurônios/citologia , Células-Tronco Pluripotentes/metabolismo , Animais , Calcineurina/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Corpos Embrioides/citologia , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/metabolismo , Fatores de Transcrição NFATC/metabolismo , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Transdução de Sinais
12.
Curr Diabetes Rev ; 14(1): 14-23, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28595528

RESUMO

BACKGROUND: More than a decade ago, a new research field named Stem Cell Therapy emerged in Health Science. Initially, it was considered that cells owned a differentiation capability; however, this dogma has changed when new results have been published regarding the ability of the cells to differentiate into different cell tissue mainly due to the novel reprogramming strategies. Accordingly, cells from an adult tissue source may be potentially capable of originating cells of a very different cell type. The possibility of transplanting these cells into damaged organs has triggered many studies to understand the plasticity of stem cells. Today, we have a deeper knowledge about stem cells, however still many questions, especially about the mechanism of action, that needs to be answered. The benefit of stem cells after transplantation has been demonstrated experimentally and also in some cases clinically; however, the extent of stem cell contribution in transplanted tissue has been found to be low and a large number of evidence indicates that a trophic effect should play an important role in such benefit. A better understanding of the paracrine mechanisms involved in this process could be of great relevance in order to focus studies on endogenous cells to direct their function towards the regeneration of damaged tissue. In addition, even more sophisticated methods of reprogramming and cell transplantation have been initiated in combination with bioengineering techniques in order to enhance the potential of these cells. CONCLUSION: In the present review, we will overview the studies on stem cell and their effects in the treatment of diabetes in order to discuss the questions generated about their origin and the mechanisms that are involved in their reparative properties.


Assuntos
Diabetes Mellitus Tipo 1/terapia , Transplante de Células-Tronco , Animais , Diferenciação Celular , Reprogramação Celular/fisiologia , Células-Tronco Embrionárias/fisiologia , Humanos , Transplante de Células-Tronco/métodos , Transplante de Células-Tronco/tendências
13.
Sci Rep ; 6: 38308, 2016 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-27910911

RESUMO

Mesenchymal stem cells (MSCs) are speculated to act at macrophage-injury interfaces to mediate efficient repair. To explore this facet in-depth this study evaluates the influence of MSCs on human macrophages existing in distinct functional states. MSCs promoted macrophage differentiation, enhanced respiratory burst and potentiated microbicidal responses in naïve macrophages (Mφ). Functional attenuation of inflammatory M1 macrophages was associated with a concomitant shift towards alternatively activated M2 state in MSC-M1 co-cultures. In contrast, alternate macrophage (M2) activation was enhanced in MSC-M2 co-cultures. Elucidation of key macrophage metabolic programs in Mo/MSC, M1/MSC and M2/MSC co-cultures indicated changes in Glucose transporter1 (GLUT1 expression/glucose uptake, IDO1 protein/activity, SIRTUIN1 and alterations in AMPK and mTOR activity, reflecting MSC-instructed metabolic shifts. Inability of Cox2 knockdown MSCs to attenuate M1 macrophages and their inefficiency in instructing metabolic shifts in polarized macrophages establishes a key role for MSC-secreted PGE2 in manipulating macrophage metabolic status and plasticity. Functional significance of MSC-mediated macrophage activation shifts was further validated on human endothelial cells prone to M1 mediated injury. In conclusion, we propose a novel role for MSC secreted factors induced at the MSC-macrophage interface in re-educating macrophages by manipulating metabolic programs in differentially polarized macrophages.


Assuntos
Meios de Cultivo Condicionados/farmacologia , Dinoprostona/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Comunicação Celular , Diferenciação Celular/efeitos dos fármacos , Técnicas de Cocultura , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/metabolismo , Células-Tronco Mesenquimais/citologia , Fagocitose/efeitos dos fármacos , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Salmonella enterica/crescimento & desenvolvimento , Transdução de Sinais , Sirtuína 1/genética , Sirtuína 1/metabolismo , Células THP-1 , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
14.
Differentiation ; 92(5): 249-256, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27181524

RESUMO

Efficient induction of defined lineages in pluripotent stem cells constitutes the determinant step for the generation of therapeutically relevant replacement cells to potentially treat a wide range of diseases, including diabetes. Pancreatic differentiation has remained an important challenge in large part because of the need to differentiate uncommitted pluripotent stem cells into highly specialized hormone-secreting cells, which has been shown to require a developmentally informed step-by-step induction procedure. Here, in the framework of using induced pluripotent stem cells (iPSCs) to generate pancreatic cells for pancreatic diseases, we have generated and characterized iPSCs from Pdx1-GFP transgenic mice. The use of a GFP reporter knocked into the endogenous Pdx1 promoter allowed us to monitor pancreatic induction based on the expression of Pdx1, a pancreatic master transcription factor, and to isolate a pure Pdx1-GFP+ population for downstream applications. Differentiated cultures timely expressed markers specific to each stage and end-stage progenies acquired a rather immature beta-cell phenotype, characterized by polyhormonal expression even among cells highly expressing the Pdx1-GFP reporter. Our findings highlight the utility of employing a fluorescent protein reporter under the control of a master developmental gene in order to devise novel differentiation protocols for relevant cell types for degenerative diseases such as pancreatic beta cells for diabetes.


Assuntos
Diferenciação Celular/genética , Proteínas de Homeodomínio/genética , Células-Tronco Pluripotentes Induzidas/citologia , Pâncreas/crescimento & desenvolvimento , Transativadores/genética , Animais , Células-Tronco Embrionárias/citologia , Genes Reporter , Proteínas de Fluorescência Verde/genética , Camundongos , Camundongos Transgênicos , Pâncreas/citologia , Regiões Promotoras Genéticas
15.
Microbiology (Reading) ; 162(5): 764-776, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26944926

RESUMO

The cellular proteolytic machinery orchestrates protein turnover and regulates several key biological processes. This study addresses the roles of Lon, a major ATP-dependent protease, in modulating the responses of Escherichia coli strain MG1655 to low and high amounts of sodium salicyclate (NaSal), a widely used clinically relevant analgesic. NaSal affects several bacterial responses, including growth and resistance to multiple antibiotics. The loss of lon reduces growth in response to high, but not low, amounts of NaSal. From amongst a panel of Lon substrates, MarA was identified to be the downstream target of Lon. Thus, stabilization of MarA in the absence of lon lowers growth of the strain in the presence of higher amounts of NaSal. The steady-state transcript levels of marA and its target genes, acrA, acrB and tolC, are higher in the Δlon strain compared with the WT strain. Consequently, the resistance to antibiotics, e.g. tetracycline and nalidixic acid, is enhanced in Δlon in a marA-dependent manner. Furthermore, the target genes of MarA, i.e. acrB and tolC, are responsible for NaSal-mediated antibiotic resistance. Studies using atomic force microscopy demonstrated that ciprofloxacin led to greater cell filamentation, which is lower in the Δlon strain due to higher levels of MarA. Overall, this study delineates the roles of Lon protease, its substrate MarA and downstream targets of MarA, e.g. acrB and tolC, during NaSal-mediated growth reduction and antibiotic resistance. The implications of these observations in the adaptation of E. coli under different environmental conditions are discussed.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/crescimento & desenvolvimento , Protease La/metabolismo , Salicilato de Sódio/farmacologia , Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/genética , Ciprofloxacina/farmacologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Lipoproteínas/genética , Proteínas de Membrana Transportadoras/genética , Testes de Sensibilidade Microbiana , Microscopia de Força Atômica , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Ácido Nalidíxico/farmacologia , Protease La/genética , Salicilato de Sódio/metabolismo , Tetraciclina/farmacologia , Resistência a Tetraciclina/genética
16.
Protein Pept Lett ; 23(6): 548-61, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26927617

RESUMO

Peptidase N (PepN) is a broad specific metallo-peptidase and the sole member of the M1 class encoded by Escherichia coli. Comparative analysis of residues present in the S1 subsite of E. coli PepN with other family members revealed that Tyr-381 is conserved whereas Glu-121, Gln-119 and Tyr-376 are partially conserved. The functional importance of these amino acids was investigated by protein engineering studies. The change in Glu-121 to Gln and Tyr-381 to Phe led to catalytically inactive PepN. At the same time, the change in Gln-119 to His (Q119H) and Tyr-376 to Phe (Y376F) led to alterations in substrate specificity. Kinetic studies revealed that purified PepN variants, Q119H and Y376F, cleaved some substrates (e.g. Arg) similar to wild type PepN. However, these variants displayed lower efficacy with other substrates (e.g. Tyr, AAF and Suc-AAF). Q119H or Y376F, cleave a natural peptide (insulin B chain) and a loosely folded protein (casein) with greatly reduced efficacy. The double mutant, i.e. harboring both Q119H and Y376F, displays greatly reduced catalytic activity with respect to all substrates studied. The in vivo significance was addressed by expressing these variants in ΔpepN during nutritional downshift and high temperature (NDHT) stress. Compared to wild type PepN, the Y376F and Q119H variants display lower intracellular amounts of free N-terminal amino acids and reduction in growth during NDHT stress. Finally, structural modeling, using the crystal structure of E. coli PepN bound to substrates, Arg or Tyr, shed insights into the roles of Q119H and Y376F in determining substrate preferences.


Assuntos
Aminopeptidases/genética , Aminopeptidases/metabolismo , Caseínas/metabolismo , Escherichia coli/enzimologia , Insulina/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Catálise , Cristalografia por Raios X , Escherichia coli/metabolismo , Temperatura Alta , Engenharia de Proteínas , Estrutura Secundária de Proteína , Alinhamento de Sequência , Especificidade por Substrato/genética
17.
Free Radic Res ; 50(5): 570-84, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26899340

RESUMO

Reactive oxygen species (ROS) have been poised at a straddled state of being beneficiary as well detrimental depending on its threshold levels. Maintaining the homeostasis of ROS is imperative for normal cellular physiology, wherein physiological concentrations of ROS are involved in cell signaling and elevated ROS contribute to the development of various diseases. Superoxide dismutases (SODs), enzymes involved in dismutation of superoxide anion to hydrogen peroxide, arrive as a first line of defense when there is perturbation in the homeostasis of ROS. As mitochondria are the main site of superoxide production, among SODs, mitochondrial manganese SOD (MnSOD) is the primary antioxidant enzyme that protects cells from ROS. Most importantly, knockout of MnSOD leads to postnatal lethality and tissue-specific conditional knockout in brain resulted in death of mice, conclusively portraying the essential role of MnSOD in development. Although MnSOD has been extensively discussed with the purview of tumor biology and aging, understanding the crucial role of MnSOD in stem cell physiology is still at its infant stage. Ever increasing progress in stem cell research has recently unveiled the essential role of MnSOD in self-renewal and differentiation of stem cells. In this review, we will conglomerate the current aspects by which MnSOD can contribute to embryonic stem cells' and adult stem cells' functions and interpret the necessity of understanding MnSOD for further stem cell mediated applications.


Assuntos
Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo , Células-Tronco/metabolismo , Superóxido Dismutase/metabolismo , Animais , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Células-Tronco/enzimologia , Superóxido Dismutase/genética , Superóxidos/metabolismo
18.
Sci Rep ; 5: 9516, 2015 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-25822711

RESUMO

Leukemia Inhibitory Factor (LIF)/Signal transducer and activator of transcription 3 (STAT3) signaling pathway maintains the stemness and pluripotency of mouse embryonic stem cells (mESCs). Detailed knowledge on key intermediates in this pathway as well as any parallel pathways is largely missing. We initiated our study by investigating the effect of small molecule Curcumin on various signalling pathways essential for self-renewal. Curcumin sustained the LIF independent self-renewal of mESCs and induced pluripotent stem cells (miPSCs) in a STAT3 activity dependent manner. Gene expression analysis showed LIF/STAT3 and redox signaling components to be majorly modulated. Amongst ROS genes, expression of Manganese Superoxide Dismutase (MnSOD) specifically relied on STAT3 signaling as evidenced by STAT3 inhibition and reporter assay. The silencing of MnSOD, but not Cu-ZnSOD expression, resulted in the loss of mESC pluripotency in presence of LIF, and the overexpression of MnSOD is sufficient for maintaining the expression of pluripotent genes in the absence of STAT3 signaling. Finally, we demonstrate MnSOD to stabilize the turnover of pluripotent proteins at the post-translational level by modulating proteasomal activity. In conclusion, our findings unravel a novel role of STAT3 mediated MnSOD in the self-renewal of mESCs.

19.
Int J Biochem Cell Biol ; 46: 90-102, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24275096

RESUMO

Generation of surrogate ß-cells is the need of the day to compensate the short supply of islets for transplantation to diabetic patients requiring daily shots of insulin. Over the years several sources of stem cells have been claimed to cater to the need of insulin producing cells. These include human embryonic stem cells, induced pluripotent stem cells, human perinatal tissues such as amnion, placenta, umbilical cord and postnatal tissues involving adipose tissue, bone marrow, blood monocytes, cord blood, dental pulp, endometrium, liver, labia minora dermis-derived fibroblasts and pancreas. Despite the availability of such heterogonous sources, there is no substantial breakthrough in selecting and implementing an ideal source for generating large number of stable insulin producing cells. Although the progress in derivation of ß-cell like cells from embryonic stem cells has taken a greater leap, their application is limited due to controversy surrounding the destruction of human embryo and immune rejection. Since multipotent mesenchymal stromal cells are free of ethical and immunological complications, they could provide unprecedented opportunity as starting material to derive insulin secreting cells. The main focus of this review is to discuss the merits and demerits of MSCs obtained from human peri- and post-natal tissue sources to yield abundant glucose responsive insulin producing cells as ideal candidates for prospective stem cell therapy to treat diabetes.


Assuntos
Linfócitos B/citologia , Células-Tronco Mesenquimais/citologia , Animais , Linfócitos B/metabolismo , Diferenciação Celular/fisiologia , Humanos , Células-Tronco Mesenquimais/metabolismo
20.
PLoS One ; 8(5): e63491, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23671681

RESUMO

ß-cell replacement may efficiently cure type 1 diabetic (T1D) patients whose insulin-secreting ß-cells have been selectively destroyed by autoantigen-reactive T cells. To generate insulin-secreting cells we used two cell sources: rat multipotent adult progenitor cells (rMAPC) and the highly similar rat extra-embryonic endoderm precursor (rXEN-P) cells isolated under rMAPC conditions from blastocysts (rHypoSC). rMAPC/rHypoSC were sequentially committed to definitive endoderm, pancreatic endoderm, and ß-cell like cells. On day 21, 20% of rMAPC/rHypoSC progeny expressed Pdx1 and C-peptide. rMAPCr/HypoSC progeny secreted C-peptide under the stimulus of insulin agonist carbachol, and was inhibited by the L-type voltage-dependent calcium channel blocker nifedipine. When rMAPC or rHypoSC differentiated d21 progeny were grafted under the kidney capsule of streptozotocin-induced diabetic nude mice, hyperglycemia reversed after 4 weeks in 6/10 rMAPC- and 5/10 rHypoSC-transplanted mice. Hyperglycemia recurred within 24 hours of graft removal and the histological analysis of the retrieved grafts revealed presence of Pdx1-, Nkx6.1- and C-peptide-positive cells. The ability of both rMAPC and HypoSC to differentiate to functional ß-cell like cells may serve to gain insight into signals that govern ß-cell differentiation and aid in developing culture systems to commit other (pluripotent) stem cells to clinically useful ß-cells for cell therapy of T1D.


Assuntos
Blastocisto/citologia , Células da Medula Óssea/citologia , Camadas Germinativas/transplante , Hiperglicemia/cirurgia , Células Secretoras de Insulina/transplante , Animais , Blastocisto/metabolismo , Western Blotting , Células da Medula Óssea/metabolismo , Peptídeo C/genética , Peptídeo C/metabolismo , Diferenciação Celular/genética , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/cirurgia , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/cirurgia , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/transplante , Endoderma/citologia , Endoderma/metabolismo , Expressão Gênica , Camadas Germinativas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Hiperglicemia/complicações , Células Secretoras de Insulina/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco Multipotentes/metabolismo , Células-Tronco Multipotentes/transplante , Ratos , Ratos Endogâmicos F344 , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transplante de Células-Tronco/métodos , Fatores de Tempo , Transativadores/genética , Transativadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...