Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Reprod Immunol ; 163: 104239, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38493591

RESUMO

Immune cells at the feto-maternal interface play an important role in pregnancy; starting at implantation, maintenance of pregnancy, and parturition. The role of decidual immune cells in induction of labor still needs to be understood. Published reports on this topic show heterogeneity in methods of cell isolation, assay, analysis and cellular characterization making it difficult to collate available information in order to understand the contribution of immune cells at term leading to parturition. In the present study, available literature was reviewed to study the differences in immune cells between the decidua basalis and decidua parietalis, as well as between immune cells in term and preterm labor. Additionally, immune cells at the decidua parietalis were isolated from term not in labor (TNL) or term in labor (TL) samples and characterized via flow cytometry using a comprehensive, high-dimensional antibody panel. This allowed a full view of immune cell differences without combining multiple studies, which must include variation in isolation and analysis methods, for more conclusive data. The ratio of cells found in decidua parietalis in this study generally matched those reported in the literature, although we report a lower percentage of natural killer (NK) cells at term. We report that CD4 expression on CD8- NK cells decreased in term labor compared to not in labor samples, suggesting that natural killer cells may be migrating to other sites during labor. Also, we report a decrease in CD38 expression on CD8+ CD57+ T cells in labor, indicative of cytotoxic T cell senescence. Our study provides a comprehensive status of immune cells at the decidua-chorion interface at term.


Assuntos
Decídua , Células Matadoras Naturais , Feminino , Gravidez , Humanos , Decídua/imunologia , Células Matadoras Naturais/imunologia , Trabalho de Parto/imunologia
2.
Lab Chip ; 24(6): 1727-1749, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38334486

RESUMO

The effects of endocrine-disrupting compounds (EDCs) on the placenta, a critical gestational organ for xenobiotic protection, are well reported; however, models to determine the role of EDCs in placental disruption are limited. An advanced 2nd-trimester human placenta organ-on-chip model (2TPLA-OOC) was developed and validated, with six representative cells of the maternal and the fetal interface interconnected with microchannels. Various EDCs (150 ng mL-1 each of bisphenol A, bisphenol S, and polybrominated diphenyl ethers-47 and -99) were gradually propagated across the chip for 72 hours, and their various effects were determined. Cigarette smoke extract (CSE), an environmental risk factor, was used as a positive control. EDCs produced overall oxidative stress in the placental/decidual cells, induced cell-specific endocrine effects, caused limited (<10%) apoptosis/necrosis in trophoblasts and mesenchymal cells, induced localized inflammation but an overall anti-inflammatory shift, did not change immune cell migration from stroma to decidua, and did not affect placental nutrient transport. Overall, (1) the humanized 2TPLA-OOC recreated the placental organ and generated data distinct from the trophoblast and other cells studied in isolation, and (2) at doses associated with adverse pregnancies, EDCs produced limited and localized insults, and the whole organ compensated for the exposure.


Assuntos
Decídua , Placenta , Gravidez , Humanos , Feminino , Trofoblastos , Feto
3.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 763-781, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37658210

RESUMO

This review aims to provide an in-depth analysis of the pharmacological properties of mangiferin, focusing primarily on its bioavailability and mechanisms of action, and its potential therapeutic applications, especially in the context of chronic diseases. We conducted a comprehensive examination of in vitro and in vivo studies, as well as clinical trials involving mangiferin or plant extracts containing mangiferin. The primary source of mangiferin is Mangifera indica, but it's also found in other plant species from the families Anacardiaceae, Gentianaceae, and Iridaceae. Mangiferin has exhibited a myriad of therapeutic properties, presenting itself as a promising candidate for treating various chronic conditions including neurodegenerative disorders, cardiovascular diseases, renal and pulmonary diseases, diabetes, and obesity. Despite the promising results showcased in many in vitro studies and certain animal studies, the application of mangiferin has been limited due to its poor solubility, absorption, and overall bioavailability. Mangiferin offers significant therapeutic potential in treating a spectrum of chronic diseases, as evidenced by both in vitro and clinical trials. However, the challenges concerning its bioavailability necessitate further research, particularly in optimizing its delivery and absorption, to harness its full medicinal potential. This review serves as a comprehensive update on the health-promoting and therapeutic activities of mangiferin.


Assuntos
Mangifera , Xantonas , Animais , Humanos , Disponibilidade Biológica , Extratos Vegetais/farmacologia , Xantonas/farmacologia , Xantonas/uso terapêutico , Doença Crônica
4.
Lab Chip ; 21(10): 1956-1973, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34008619

RESUMO

Preterm birth (PTB; <37 weeks of gestation) impacts ∼11% of all pregnancies and contributes to 1 million neonatal deaths worldwide annually. An understanding of the feto-maternal (F-M) signals that initiate birthing (parturition) at term is critical to design strategies to prevent their premature activation, resulting in PTB. Although endocrine and immune cell signaling are well-reported, fetal-derived paracrine signals capable of transitioning quiescent uterus to an active state of labor are poorly studied. Recent reports have suggested that senescence of the fetal amnion membrane coinciding with fetal growth and maturation generates inflammatory signals capable of triggering parturition. This is by increasing the inflammatory load at the feto-maternal interface (FMi) tissues (i.e., amniochorion-decidua). High mobility group box 1 protein (HMGB1), an alarmin, is one of the inflammatory signals released by senescent amnion cells via extracellular vesicles (exosomes; 40-160 nm). Increased levels of HMGB1 in the amniotic fluid, cord and maternal blood are associated with term and PTB. This study tested the hypothesis that senescent amnion cells release HMGB1, which is fetal signaling capable of increasing FMi inflammation, predisposing them to parturition. To test this hypothesis, exosomes from amnion epithelial cells (AECs) grown under normal conditions were engineered to contain HMGB1 by electroporation (eHMGB1). eHMGB1 was characterized (quantity, size, shape, markers and loading efficiency), and its propagation through FMi was tested using a four-chamber microfluidic organ-on-a-chip device (FMi-OOC) that contained four distinct cell types (amnion and chorion mesenchymal, chorion trophoblast and decidual cells) connected through microchannels. eHMGB1 propagated through the fetal cells and matrix to the maternal decidua and increased inflammation (receptor expression [RAGE and TLR4] and cytokines). Furthermore, intra-amniotic injection of eHMGB1 (containing 10 ng) into pregnant CD-1 mice on embryonic day 17 led to PTB. Injecting carboxyfluorescein succinimidyl ester (CFSE)-labeled eHMGB1, we determined in vivo kinetics and report that eHMGB1 trafficking resulting in PTB was associated with increased FMi inflammation. This study determined that fetal exosome mediated paracrine signaling can generate inflammation and induce parturition. Besides, in vivo functional validation of FMi-OOC experiments strengthens the reliability of such devices to test physiologic and pathologic systems.


Assuntos
Exossomos , Proteína HMGB1 , Nascimento Prematuro , Animais , Exossomos/metabolismo , Feminino , Proteína HMGB1/metabolismo , Camundongos , Gravidez , Reprodutibilidade dos Testes , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...