Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 8(7): 2525-2532, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37339775

RESUMO

Electrochemical detection methods are attractive for developing miniaturized, disposable, and portable sensors for molecular diagnostics. In this article, we present a cucurbit[7]uril-based chemosensor with an electrochemical signal readout for the micromolar detection of the muscle relaxant pancuronium bromide in buffer and human urine. This is possible through a competitive binding assay using a chemosensor ensemble consisting of cucurbit[7]uril as the host and an electrochemically active platinum(II) compound as the guest indicator. The electrochemical properties of the indicator are strongly modulated depending on the complexation state, a feature that is exploited to establish a functional chemosensor. Our design avoids cumbersome immobilization approaches on electrode surfaces, which are associated with practical and conceptual drawbacks. Moreover, it can be used with commercially available screen-printed electrodes that require minimal sample volume. The design principle presented here can be applied to other cucurbit[n]uril-based chemosensors, providing an alternative to fluorescence-based assays.


Assuntos
Hidrocarbonetos Aromáticos com Pontes , Imidazóis , Humanos , Hidrocarbonetos Aromáticos com Pontes/química , Imidazóis/química , Eletrodos , Técnicas Eletroquímicas
2.
ACS Sens ; 7(8): 2312-2319, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35895991

RESUMO

Chemiluminescence-based detection methods offer a superior signal-to-noise ratio and are commonly adopted for biosensors. This work presents the design and implementation of a supramolecular assay based on a chemiluminescent chemosensor. Specifically, an indicator displacement assay (IDA) with the supramolecular host-guest complex of chemiluminescent phenoxy 1,2-dioxetane and cucurbit[8]uril enables the low-micromolar detection of drugs in human urine and human serum samples. Cucurbit[8]uril thereby acts as a non-surfactant chemiluminescence enhancer and a synthetic receptor. Additionally, we show that adding an equimolar amount of cucurbit[8]uril to a commercially available dioxetane used in standard enzymatic chemiluminescence immunoassays enhances the chemiluminescence by more than 15 times. Finally, we demonstrate that a chemiluminescence resonance energy transfer between a unimolecular macrocyclic cucurbit[7]uril-dye conjugate and a phenoxy 1,2-dioxetane can be utilized to detect the herbicide paraquat at a micromolar concentration in aqueous media.


Assuntos
Herbicidas , Paraquat , Humanos , Água
3.
Chemistry ; 27(56): 14100-14107, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34398494

RESUMO

Two major hurdles in NP-based catalysis are the aggregation of the NPs and their recycling. Immobilization of NPs onto a 2D support is the most promising strategy to overcome these difficulties. Herein, amphiphilicity-driven self-assembly of galactose-hexaphenylbenzene-based amphiphiles into galactose-decorated 2D nanosheet is reported. The extremely dense decoration of reducing sugar on the surface of the sheets is used for the in situ synthesis and immobilization of ultrafine catalytically active AgNPs by using Tollens' reaction. The potential of the system as a catalyst for the reduction of various nitroaromatics is demonstrated. Enhanced catalytic activity is observed for the immobilized AgNPs when compared to the corresponding discrete AgNPs. Recovery of the catalytic system from the reaction mixture by ultrafiltration and its subsequent recycling for several cycles without dropping its activity is shown. This is the first report demonstrating the in situ synthesis and immobilization of ultrafine AgNPs onto a 2D nanosheet that exhibits excellent catalytic performance for the reduction of nitroaromatics.


Assuntos
Galactose , Nanopartículas Metálicas , Catálise , Prata
4.
Chemistry ; 26(5): 1037-1041, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31749263

RESUMO

High aspect ratio, sugar-decorated 2D nanosheets are ideal candidates for the capture and agglutination of bacteria. Herein, the design and synthesis of two carbohydrate-based Janus amphiphiles that spontaneously self-assemble into high aspect ratio 2D sheets are reported. The unique structural features of the sheets include the extremely high aspect ratio and dense display of galactose on the surface. These structural characteristics allow the sheet to act as a supramolecular 2D platform for the capture and agglutination of E. coli through specific multivalent noncovalent interactions, which significantly reduces the mobility of the bacteria and leads to the inhibition of their proliferation. Our results suggest that the design strategy demonstrated here can be applied as a general approach for the crafting of biomolecule-decorated 2D nanosheets, which can perform as 2D platforms for their interaction with specific targets.


Assuntos
Dendrímeros/metabolismo , Escherichia coli/metabolismo , Galactose/química , Nanoestruturas/química , Aglutinação/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dendrímeros/química , Humanos , Nanopartículas Metálicas/química , Microscopia de Força Atômica , Nanoestruturas/toxicidade , Prata/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA