Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Plants (Basel) ; 13(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38732390

RESUMO

Phenotyping yam (Dioscorea spp.) germplasm for resistance to parasitic nematodes is hampered by the lack of an efficient screening method. In this study, we developed a new method using rooted yam vine cuttings and yam plantlets generated from semi-autotrophic hydroponics (SAHs) propagation for phenotyping yam genotypes for nematode resistance. The method was evaluated using 26 genotypes of D. rotundata for their reaction to Scutellonema bradys and four root-knot nematode species, Meloidogyne arenaria, M. enterolobii, M. incognita, and M. javanica. Yam plantlets established in nursery bags filled with steam-sterilized soil were used for screening against single nematode species. Plants were inoculated four weeks after planting and assessed for nematode damage eight weeks later. A severity rating scale was used to classify genotypes as resistant, tolerant, or susceptible determine based on the nematode feeding damage on tubers and the rate of nematode multiplication in the roots of inoculated plants. The results demonstrated putative resistance and tolerance against S. bradys in 58% of the genotypes and 88%, 65%, 65%, and 58% against M. arenaria, M. javanica, M. incognita, and M. enterolobii, respectively. The method is rapid, flexible, and seasonally independent, permitting year-round screening under controlled conditions. This method increases the throughput and speed of phenotyping and improves the selection process.

2.
Phytopathology ; 113(9): 1622-1629, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37311729

RESUMO

Plant viruses pose a continuous and serious threat to crop production worldwide, and globalization and climate change are exacerbating the establishment and rapid spread of new viruses. Simultaneously, developments in genome sequencing technology, nucleic acid amplification methods, and epidemiological modeling are providing plant health specialists with unprecedented opportunities to confront these major threats to the food security and livelihoods of millions of resource-constrained smallholders. In this perspective, we have used recent examples of integrated application of these technologies to enhance understanding of the emergence of plant viral diseases of key food security crops in low- and middle-income countries. We highlight how international funding and collaboration have enabled high-throughput sequencing-based surveillance approaches, targeted field and lab-based diagnostic tools, and modeling approaches that can be effectively used to support surveillance and preparedness against existing and emerging plant viral threats. The importance of national and international collaboration and the future role of CGIAR in further supporting these efforts, including building capabilities to make optimal use of these technologies in low- and middle-income countries, are discussed. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Vírus de Plantas , Viroses , Doenças das Plantas , Produtos Agrícolas , Segurança Alimentar
3.
Front Plant Sci ; 13: 1035549, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531382

RESUMO

Taro leaf blight caused by Phytophthora colocasiae adversely affects the growth and yield of taro. The management of this disease depends heavily on synthetic fungicides. These compounds, however, pose potential hazards to human health and the environment. The present study aimed to investigate an alternative approach for plant growth promotion and disease control by evaluating seven different bacterial strains (viz., Serratia plymuthica, S412; S. plymuthica, S414; S. plymuthica, AS13; S. proteamaculans, S4; S. rubidaea, EV23; S. rubidaea, AV10; Pseudomonas fluorescens, SLU-99) and their different combinations as consortia against P. colocasiae. Antagonistic tests were performed in in vitro plate assays and the effective strains were selected for detached leaf assays and greenhouse trials. Plant growth-promoting and disease prevention traits of selected bacterial strains were also investigated in vitro. Our results indicated that some of these strains used singly (AV10, AS13, S4, and S414) and in combinations (S4+S414, AS13+AV10) reduced the growth of P. colocasiae (30-50%) in vitro and showed disease reduction ability when used singly or in combinations as consortia in greenhouse trials (88.75-99.37%). The disease-suppressing ability of these strains may be related to the production of enzymes such as chitinase, protease, cellulase, and amylase. Furthermore, all strains tested possessed plant growth-promoting traits such as indole-3-acetic acid production, siderophore formation, and phosphate solubilization. Overall, the present study revealed that bacterial strains significantly suppressed P. colocasiae disease development using in vitro, detached leaf, and greenhouse assays. Therefore, these bacterial strains can be used as an alternative strategy to minimize the use of synthetic fungicides and fertilizers to control taro blight and improve sustainable taro production.

4.
Front Plant Sci ; 13: 846989, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35620696

RESUMO

Viruses of the genus Badnavirus (family Caulimoviridae) are double-stranded DNA-reverse transcribing (dsDNA-RT) plant viruses and have emerged as serious pathogens of tropical and temperate crops globally. Endogenous badnaviral sequences are found integrated in the genomes of several economically important plant species. Infection due to activation of replication-competent integrated copies of the genera Badnavirus, Petuvirus and Cavemovirus has been described. Such endogenous badnaviral elements pose challenges to the development of nucleic acid-based diagnostic methods for episomal virus infections and decisions on health certification for international movement of germplasm and seed. One major food security crop affected is yam (Dioscorea spp.). A diverse range of Dioscorea bacilliform viruses (DBVs), and endogenous DBV (eDBV) sequences have been found to be widespread in yams cultivated in West Africa and other parts of the world. This study outlines the development of multiplex PCR-dependent denaturing gradient gel electrophoresis (PCR-DGGE) to assist in the detection and analysis of eDBVs, through the example of analysing yam germplasm from Nigeria and Ghana. Primers targeting the three most prevalent DBV monophyletic species groups in West Africa were designed to improve DGGE resolution of complex eDBV sequence fingerprints. Multiplex PCR-DGGE with the addition of a tailor-made DGGE sequence marker enables rapid comparison of endogenous badnaviral sequence diversity across germplasm, as illustrated in this study for eDBV diversity in yam.

5.
Plants (Basel) ; 11(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35567207

RESUMO

Banana bunchy top disease (BBTD), caused by the banana bunchy top virus (BBTV, genus Babuvirus), is the most destructive viral disease of banana and plantain (Musa spp.). The virus is transmitted persistently by the banana aphid, Pentalonia nigronervosa Coquerel (Hemiptera: Aphididae). While research efforts have focused on screening Musa genotypes for BBTD resistance, comparatively little work has been carried out to identify resistance to banana aphids. This study assessed 44 Musa germplasm of different A and B genome composition for the performance of banana aphids under semicontrolled environmental screenhouse conditions and in a field trial established in a BBTD endemic location. In the screenhouse, the AA diploid Calcutta 4 had the lowest apterous aphid density per plant (9.7 ± 4.6) compared with AAB triploid Waema, which had the highest aphid densities (395.6 ± 20.8). In the field, the highest apterous aphid density per plant (29.2 ± 6.7) occurred on the AAB triploid Batard and the lowest (0.4 ± 0.2) on the AA diploid Pisang Tongat. The AA diploid Tapo was highly susceptible to BBTD (100% infection) compared with the genotypes Balonkawe (ABB), PITA 21 (AAB), Calcutta 4 (AA), and Balbisiana Los Banos (BB), which remained uninfected. The Musa genotypes with apparent resistance to BBTD and least susceptibility to aphid population growth provide options for considering aphid and BBTD resistance in banana and plantain breeding programs.

6.
PLoS Pathog ; 18(4): e1010448, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35413079

RESUMO

Banana bunchy top virus (BBTV) is a six-component ssDNA virus (genus Babuvirus, family Nanoviridae) transmitted by aphids, infecting monocots (mainly species in the family Musaceae) and likely originating from South-East Asia where it is frequently associated with self-replicating alphasatellites. Illumina sequencing analysis of banana aphids and leaf samples from Africa revealed an alphasatellite that should be classified in a new genus, phylogenetically related to alphasatellites of nanoviruses infecting dicots. Alphasatellite DNA was encapsidated by BBTV coat protein and accumulated at high levels in plants and aphids, thereby reducing helper virus loads, altering relative abundance (formula) of viral genome components and interfering with virus transmission by aphids. BBTV and alphasatellite clones infected dicot Nicotiana benthamiana, followed by recovery and symptomless persistence of alphasatellite, and BBTV replication protein (Rep), but not alphasatellite Rep, induced leaf chlorosis. Transcriptome sequencing revealed 21, 22 and 24 nucleotide small interfering (si)RNAs covering both strands of the entire viral genome, monodirectional Pol II transcription units of viral mRNAs and pervasive transcription of each component and alphasatellite in both directions, likely generating double-stranded precursors of viral siRNAs. Consistent with the latter hypothesis, viral DNA formulas with and without alphasatellite resembled viral siRNA formulas but not mRNA formulas. Alphasatellite decreased transcription efficiency of DNA-N encoding a putative aphid transmission factor and increased relative siRNA production rates from Rep- and movement protein-encoding components. Alphasatellite itself spawned the most abundant siRNAs and had the lowest mRNA transcription rate. Collectively, following African invasion, BBTV got associated with an alphasatellite likely originating from a dicot plant and interfering with BBTV replication and transmission. Molecular analysis of virus-infected banana plants revealed new features of viral DNA transcription and siRNA biogenesis, both affected by alphasatellite. Costs and benefits of alphasatellite association with helper viruses are discussed.


Assuntos
Afídeos , Babuvirus , Musa , Animais , Afídeos/genética , Babuvirus/genética , DNA Viral/genética , Doenças das Plantas , RNA Interferente Pequeno/genética
8.
Plants (Basel) ; 10(2)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572058

RESUMO

The inherent ability of seeds (orthodox, intermediate, and recalcitrant seeds and vegetative propagules) to serve as carriers of pests and pathogens (hereafter referred to as pests) and the risk of transboundary spread along with the seed movement present a high-risk factor for international germplasm distribution activities. Quarantine and phytosanitary procedures have been established by many countries around the world to minimize seed-borne pest spread by screening export and import consignments of germplasm. The effectiveness of these time-consuming and cost-intensive procedures depends on the knowledge of pest distribution, availability of diagnostic tools for seed health testing, qualified operators, procedures for inspection, and seed phytosanitation. This review describes a unique multidisciplinary approach used by the CGIAR Germplasm Health Units (GHUs) in ensuring phytosanitary protection for the safe conservation and global movement of germplasm from the 11 CGIAR genebanks and breeding programs that acquire and distribute germplasm to and from all parts of the world for agricultural research and food security. We also present the challenges, lessons learned, and recommendations stemming from the experience of GHUs, which collaborate with the national quarantine systems to export and distribute about 100,000 germplasm samples annually to partners located in about 90 to 100 countries. Furthermore, we describe how GHUs adjust their procedures to stay in alignment with evolving phytosanitary regulations and pest risk scenarios. In conclusion, we state the benefits of globally coordinated phytosanitary networks for the prevention of the intercontinental spread of pests that are transmissible through plant propagation materials.

9.
Plants (Basel) ; 9(10)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019539

RESUMO

The international collections of plant genetic resources for food and agriculture (PGRFA) hosted by 11 CGIAR Centers are important components of the United Nations Food and Agriculture Organization's global system of conservation and use of PGRFA. They also play an important supportive role in realizing Target 2.5 of the Sustainable Development Goals. This paper analyzes CGIAR genebanks' trends in acquiring and distributing PGRFA over the last 35 years, with a particular focus on the last decade. The paper highlights a number of factors influencing the Centers' acquisition of new PGRFA to include in the international collections, including increased capacity to analyze gaps in those collections and precisely target new collecting missions, availability of financial resources, and the state of international and national access and benefit-sharing laws and phytosanitary regulations. Factors contributing to Centers' distributions of PGRFA included the extent of accession-level information, users' capacity to identify the materials they want, and policies. The genebanks' rates of both acquisition and distribution increased over the last decade. The paper ends on a cautionary note concerning the potential of unresolved tensions regarding access and benefit sharing and digital genomic sequence information to undermine international cooperation to conserve and use PGRFA.

10.
Bioscience ; 70(9): 744-758, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32973407

RESUMO

The geographic pattern of cropland is an important risk factor for invasion and saturation by crop-specific pathogens and arthropods. Understanding cropland networks supports smart pest sampling and mitigation strategies. We evaluate global networks of cropland connectivity for key vegetatively propagated crops (banana and plantain, cassava, potato, sweet potato, and yam) important for food security in the tropics. For each crop, potential movement between geographic location pairs was evaluated using a gravity model, with associated uncertainty quantification. The highly linked hub and bridge locations in cropland connectivity risk maps are likely priorities for surveillance and management, and for tracing intraregion movement of pathogens and pests. Important locations are identified beyond those locations that simply have high crop density. Cropland connectivity risk maps provide a new risk component for integration with other factors-such as climatic suitability, genetic resistance, and global trade routes-to inform pest risk assessment and mitigation.

11.
Curr Plant Biol ; 23: 100156, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32884907

RESUMO

This study analyzed the genetic diversity of 18 Yam mild mosaic virus (YMMV, genus Potyvirus) isolates collected from field surveys in Ghana (N = 8) and Nigeria (N = 10) in 2012-13. The full coat protein (CP) encoding region of the virus genome was sequenced and used for comparison and phylogenetic analysis of the YMMV isolates available in the NCBI nucleotide database. The mean nucleotide (nt) diversity was 13.4% among the 18 isolates (17 from D. alata and one from D. rotundata), 11.4% within the isolates of Ghana and 7.4% within the isolates of Nigeria. The phylogenetic clustering of the 18 YMMV isolates did not show correlation with the country of origin, and they aligned with the reference sequences of four of the 11 YMMV monophyletic groups representing the cosmopolitan group and the African group of YMMV isolates. High sequence homology of 99% between the YMMV sequence from Nigeria (CP12-DaN6-1) and a previously reported sequence from Togo (GenBank Accession Number AF548514) suggests a prevalence of seed-borne virus spread within the region. Understanding YMMV sequence diversity in West Africa aid in the improvement of diagnostic assays necessary for virus indexing and seed certification.

12.
Virusdisease ; 31(3): 396-397, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32904900

RESUMO

[This corrects the article DOI: 10.1007/s13337-019-00555-0.].

13.
J Nematol ; 522020.
Artigo em Inglês | MEDLINE | ID: mdl-33829204

RESUMO

The root-lesion nematodes (RLN), Pratylenchus spp., are among the major plant-parasitic nematodes affecting yam (Dioscorea spp.) production in West Africa. The distribution and diversity of RLN species associated with yam was investigated through a soil and tuber survey of the main producing areas in Nigeria and Ghana. Pratylenchus spp. were detected in the yam rhizosphere in 59% of 81 soil samples from Ghana and 39% of 114 soil samples from Nigeria. Pratylenchus spp. were detected in 24 of 400 tubers examined, in combination with root-knot nematodes (Meloidogyne spp.) and their associated damage of galls and crazy roots (79%), and with yam nematode (Scutellonema bradys) and their associated damage of dry rot (17%), although no specific additional symptoms were observed for Pratylenchus spp. Species of Pratylenchus were identified by their morphological features and by sequences of the D2-D3 region of the 28 S rDNA gene and the mitochondrial cytochrome oxidase I gene (COI). Pratylenchus brachyurus was the most frequent RLN species in both the rhizosphere and tubers of yam. Pratylenchus hexincisus was recovered from one tuber collected in Nigeria. While further investigations are required to establish the host status of yam for this nematode, this appears to be the first record of P. hexincisus on yam. The present taxonomical status of P. scribneri and P. hexincisus is discussed.

14.
Front Microbiol ; 11: 609784, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584573

RESUMO

Viral diseases are significant biotic constraints for banana (Musa spp.) production as they affect the yield and limit the international movement of germplasm. Among all the viruses known to infect banana, the banana bunchy top virus and banana streak viruses are widespread and economically damaging. The use of virus-resistant bananas is the most cost-effective option to minimize the negative impacts of viral-diseases on banana production. CRISPR/Cas-based genome editing is emerging as the most powerful tool for developing virus-resistant crop varieties in several crops, including the banana. The availability of a vigorous genetic transformation and regeneration system and a well-annotated whole-genome sequence of banana makes it a compelling candidate for genome editing. A robust CRISPR/Cas9-based genome editing of the banana has recently been established, which can be applied in developing disease-resistant varieties. Recently, the CRISPR system was exploited to detect target gene sequences using Cas9, Cas12, Cas13, and Cas14 enzymes, thereby unveiling the use of this technology for virus diagnosis. This article presents a synopsis of recent advancements and perspectives on the application of CRISPR/Cas-based genome editing for diagnosing and developing resistance against banana viruses and challenges in genome-editing of banana.

15.
Front Microbiol ; 10: 2529, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31803149

RESUMO

Aflatoxins pose significant food security and public health risks, decrease productivity and profitability of animal industries, and hamper trade. To minimize aflatoxin contamination in several crops, a biocontrol technology based on atoxigenic strains of Aspergillus flavus is commercially used in the United States and some African countries. Significant efforts are underway to popularize the use of biocontrol in Africa by various means including incentives. The purpose of this study was to develop quantitative pyrosequencing assays for rapid, simultaneous quantification of proportions of four A. flavus biocontrol genotypes within complex populations of A. flavus associated with maize crops in Nigeria to facilitate payment of farmer incentives for Aflasafe (a biocontrol product) use. Protocols were developed to confirm use of Aflasafe by small scale farmers in Nigeria. Nested PCR amplifications followed by sequence by synthesis pyrosequencing assays were required to quantify frequencies of the active ingredients and, in so doing, confirm successful use of biocontrol by participating farmers. The entire verification process could be completed in 3-4 days proving a savings over other monitoring methods in both time and costs and providing data in a time frame that could work with the commercial agriculture scheme. Quantitative pyrosequencing assays represent a reliable tool for rapid detection, quantification, and monitoring of multiple A. flavus genotypes within complex fungal communities, satisfying the requirements of the regulatory community and crop end-users that wish to determine which purchased crops were treated with the biocontrol product. Techniques developed in the current study can be modified for monitoring other crop-associated fungi.

16.
Plants (Basel) ; 8(6)2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31212654

RESUMO

To date, several viruses of different genera have been reported to infect yam (Dioscorea spp.). The full diversity of viruses infecting yam, however, remains to be explored. High-throughput sequencing (HTS) methods are increasingly being used in the discovery of new plant viral genomes. In this study, we employed HTS on yam to determine whether any undiscovered viruses were present that would restrict the international distribution of yam germplasm. We discovered a new virus sequence present in 31 yam samples tested and have tentatively named this virus "yam virus Y" (YVY). Twenty-three of the samples in which YVY was detected showed mosaic and chlorotic leaf symptoms, but Yam mosaic virus was also detected in these samples. Complete genome sequences of two YVY viral isolates were assembled and found to contain five open reading frames (ORFs). ORF1 encodes a large replication-associated protein, ORF2, ORF3 and ORF4 constitute the putative triple gene block proteins, and ORF5 encodes a putative coat protein. Considering the species demarcation criteria of the family Betaflexiviridae, YVY should be considered as a novel virus species in the family Betaflexiviridae. Further work is needed to understand the association of this new virus with any symptoms and yield loss and its implication on virus-free seed yam production.

17.
Physiol Mol Plant Pathol ; 105: 54-66, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31007374

RESUMO

In vitro culture offers many advantages for yam germplasm conservation, propagation and international distribution. However, low virus titres in the generated tissues pose a challenge for reliable virus detection, which makes it difficult to ensure that planting material is virus-free. In this study, we evaluated next-generation sequencing (NGS) for virus detection following yam propagation using a robust tissue culture methodology. We detected and assembled the genomes of novel isolates of already characterised viral species of the genera Badnavirus and Potyvirus, confirming the utility of NGS in diagnosing yam viruses and contributing towards the safe distribution of germplasm.

18.
Plant Dis ; 103(5): 818-824, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30806574

RESUMO

Maize and sugarcane are two economically important crops often grown in adjacent fields or co-cultivated in the northern guinea savannah agroecological zone, a major cereal production region of Nigeria. This study was conducted to determine the prevalence of mosaic disease in sugarcane and maize fields in the northern guinea savannah agroecological zone and to molecularly characterize the associated sugarcane mosaic virus (SCMV, genus Potyvirus) isolates. Surveys were conducted from June to July 2015, and sugarcane mosaic disease (SCMD) incidence was assessed across 21 farmer's fields. Mean SCMD incidence varied across states with ∼82% (308/376), ∼66% (143/218), and ∼67% (36/54) recorded in Kaduna, Kano, and Katsina states, respectively. RT-PCR analysis of 415 field-collected samples using genus-specific primers confirmed potyvirus infection in 63.7% (156/245) of sugarcane, 29.7% (42/141) of maize crops, and 45% (13/29) of itch grass samples. Cloning and sequencing of gene-specific DNA amplicons from a subset of 45 samples (sugarcane = 33, maize = 9, itch grass = 3) confirmed their specificities to SCMV. Phylogenetic analysis of the partial gene sequences showed that they all belong to a single monophyletic clade of SCMV. These results were supported by analysis of complete polyprotein sequences of representative maize and sugarcane isolates from Nigeria. Both isolates shared 94.9%/97.3% complete polyprotein nucleotide (nt)/amino acid (aa) identities with each other and 75.2%/97.6% nt/aa identities with corresponding sequences of global SCMV isolates. The detection of identical populations of SCMV isolates in both crop species and a weed host suggests possible vector mediated interspecies spread within cereal landscapes in the study area with implications for the integrated and sustainable management of SCMD in cereal cropping systems in Nigeria.


Assuntos
Genoma Viral , Doenças das Plantas , Potyvirus , Nigéria , Filogenia , Doenças das Plantas/estatística & dados numéricos , Doenças das Plantas/virologia , Potyvirus/genética , Prevalência , Saccharum/virologia , Zea mays/virologia
19.
Virusdisease ; 30(4): 538-544, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31890753

RESUMO

Maize yellow mosaic virus (MaYMV; genus Polerovirus; family Luteoviridae) was recently characterized from maize in China and subsequently detected in mixed infection with sugarcane mosaic virus (genus Potyvirus; family Potyviridae) in sugarcane and itch grass in Nigeria. This study was conducted to understand the status and genetic diversity of MaYMV in maize fields in the northern guinea savannah region of Nigeria. A survey was conducted in 2017 and maize (n = 90) and itch grass (n = 10) plants suspected of virus infection based on appearance of mosaic and/or yellowing symptoms were sampled in Kaduna (n = 65) and Katsina (n = 35) states. The samples were screened individually by reverse transcription polymerase chain reaction using the genus-specific primers targeting poleroviruses and potyviruses Pol-G-F and Pol-G-R primers encompassing the partial P1-P2 fusion protein and coat protein genes of poleroviruses and primer pair CI-For & CI-Rev encompassing the partial cylindrical inclusion proteins of most potyviruses. A subset of amplified DNA fragments was cloned, Sanger-sequenced, and the obtained sequences were bioinformatically analyzed along with corresponding sequences from GenBank. The ~ 1.1 Kb polerovirus fragment was detected in 32.2% (29/90) of the maize samples while all 10 itch grass samples tested negative. BLASTN analysis of sequences derived from six polerovirus samples confirmed the virus identity as MaYMV. In pairwise comparisons, the MaYMV sequences derived in this study shared 97-99% nucleotide identity with sequences of other MaYMV isolates available in the NCBI GenBank. Phylogenetic analysis revealed the segregation of global MaYMV sequences into three host-independent clusters with pattern of geographic structuring.

20.
PLoS One ; 13(10): e0197717, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30303959

RESUMO

Water yam (Dioscorea alata L.) is one of the most important food yams with wide geographical distribution in the tropics. One of the major constraints to water yam production is anthracnose disease caused by a fungus, Colletotrichum gloeosporioides (Penz.). There are no economically feasible solutions as chemical sprays or cultural practices, such as crop rotation are seldom convenient for smallholder farmers for sustainable control of the disease. Breeding for development of durable genetic resistant varieties is known to offer lasting solution to control endemic disease threats to crop production. However, breeding for resistance to anthracnose has been slow considering the biological constraints related to the heterozygous and vegetative propagation of the crop. The development of saturated linkage maps with high marker density, such as SSRs, followed by identification of QTLs can accelerate the speed and precision of resistance breeding in water yam. In a previous study, a total of 1,152 EST-SSRs were developed from >40,000 EST-sequences generated from two D. alata genotypes. A set of 380 EST-SSRs were validated as polymorphic when tested on two diverse parents targeted for anthracnose disease and were used to generate a saturated linkage map. Majority of the SSRs (60.2%) showed Mendelian segregation pattern and had no effect on the construction of linkage map. All 380 EST-SSRs were mapped into 20 linkage groups, and covered a total length of 3229.5 cM. Majority of the markers were mapped on linkage group 1 (LG 1) comprising of 97 EST-SSRs. This is the first genetic linkage map of water yam constructed using EST-SSRs. QTL localization was based on phenotypic data collected over a 3-year period of inoculating the mapping population with the most virulent strain of C. gloeosporioides from West Africa. Based on threshold LOD scores, one QTL was consistently observed on LG 14 in all the three years and average score data. This QTL was found at position interval of 71.1-84.8 cM explaining 68.5% of the total phenotypic variation in the average score data. The high marker density allowed identification of QTLs and association for anthracnose disease, which could be validated in other mapping populations and used in marker-assisted breeding in D. alata improvement programmes.


Assuntos
Dioscorea/genética , Ligação Genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Colletotrichum/fisiologia , Dioscorea/microbiologia , Resistência à Doença , Etiquetas de Sequências Expressas , Genoma de Planta , Repetições de Microssatélites , Melhoramento Vegetal , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...