Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
Environ Geochem Health ; 46(9): 308, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39001890

RESUMO

This study introduces a new biosorbent derived from Delonix regia bark-activated carbon to efficiently remove Chromium Cr(VI) metal ions from aqueous systems. The biosorbent was synthesized from the bark powder of the plant species and chemically activated with phosphoric acid. The biosorbent was characterized using FTIR, SEM, and BET to determine its functional properties and structural morphology. The batch adsorption experiments examined the optimal conditions for Cr(VI) metal ion adsorption, identifying that the highest removal efficiency occurred at pH levels of 2. The ideal adsorbent dosage was determined to be 2.5 g/L, with equilibrium achieved at a contact time of 60 min at the optimal temperature of about 303 K for a Cr(VI) metal ion concentration of 20 mg/L. Various isotherm models were applied to the adsorption equilibrium values, revealing that the adsorbent had a maximum removal capacity of approximately 224.8 mg/g for Cr(VI) metal ions. The adsorption process of Cr(VI) on the DAC biosorbent was best described by the Freundlich isotherm, indicating multilayer adsorption. The kinetic data fit well with the pseudo-second-order model. Thermodynamic parameters suggested that the adsorption process was spontaneous, exothermic, and feasible across different temperatures. Furthermore, the desorption studies showed that the DAC biosorbent can easily be rejuvenated and utilized several cycles with high adsorption capacity. These findings indicate that the developed adsorbent is environmentally friendly and effective for removing Cr(VI) from water systems.


Assuntos
Carvão Vegetal , Cromo , Casca de Planta , Poluentes Químicos da Água , Cromo/química , Adsorção , Casca de Planta/química , Poluentes Químicos da Água/química , Carvão Vegetal/química , Concentração de Íons de Hidrogênio , Purificação da Água/métodos , Cinética , Sapotaceae/química , Termodinâmica , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
2.
MethodsX ; 12: 102739, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38737485

RESUMO

Background: Non-communicable diseases (NCDs) are the leading cause of morbidity and mortality in India, necessitating development of multilevel and multicomponent interventions. Makkalai Thedi Maruthuvam (MTM) is a complex multilevel, multicomponent intervention developed and implemented by the south Indian State of Tamil Nadu. The scheme aims to deliver services for preventing and controlling diabetes, and hypertension at doorstep. This paper describes the protocol for planning and conducting the process evaluation of the MTM scheme. Methods and analysis: The process evaluation uses mixed methods (secondary data analysis, key informant interviews, in-depth interviews, conceptual content analysis of documents, facility-based survey and non-participant observation) to evaluate the implementation of the MTM scheme. The broad evaluation questions addressed the fidelity, contexts, mechanisms of impact and challenges encountered by the scheme using the Consolidated Framework for Implementation Research (CFIR) framework. The specific evaluation questions addressed selected inputs and processes identified as critical to implementation by the stakeholders. The CFIR framework will guide the thematic analysis of the qualitative interviews to explore the adaptations and deviations introduced during implementation in various contexts. The quantitative data on the indicators developed for the specific evaluation questions will be cleaned and descriptively analysed.

3.
Environ Pollut ; 339: 122720, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37839681

RESUMO

Rapid industrialization has exacerbated the hazard to health and the environment. Wide spectrums of contaminants pose numerous risks, necessitating their disposal and treatment. There is a need for further remediation methods since pollutant residues cannot be entirely eradicated by traditional treatment techniques. Bio-adsorbents are gaining popularity due to their eco-friendly approach, broad applicability, and improved functional and surface characteristics. Adsorbents that have been modified have improved qualities that aid in their adsorptive nature. Adsorption, ion exchange, chelation, surface precipitation, microbial uptake, physical entrapment, biodegradation, redox reactions, and electrostatic interactions are some of the processes that participate in the removal mechanism of biosorbents. These processes can vary depending on the particular biosorbent and the type of pollutants being targeted. The systematic review focuses on the many modification approaches used to remove environmental contaminants. Different modification or activation strategies can be used depending on the type of bio-adsorbent and pollutant to be remediated. Physical activation procedures such as ultrasonication and pyrolysis are more commonly used to modify bio-adsorbents. Ultrasonication process improves the adsorption efficiency by 15-25%. Acid and alkali modified procedures are the most effective chemical activation strategies for adsorbent modification for pollution removal. Chemical modification increases the removal to around 95-99%. The biological technique involving microbial culture is an emerging field that needs to be investigated further for pollutant removal. A short evaluation of modified adsorbents with multi-pollutant adsorption capability that have been better eliminated throughout the adsorption process has been provided.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Biodegradação Ambiental
4.
Mol Biotechnol ; 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37566189

RESUMO

Biohydrogen is an economical fuel which has enormous promise as an alternative energy source. The synthesis of biohydrogen can be done more affordably and sustainably using microalgae. For the generation of biohydrogen and the treatment of wastewater, microalgae derived from effluent have been showing very impressive outcomes. In comparison to traditional fuel sources, microalgae have benefits. Microalgae are capable of fixing ambient Carbon dioxide and converting it to carbohydrates, which are subsequently processed biochemically to provide fuel. When compared to terrestrial crops, they require less water and minerals for production. But besides these benefits, there are certain technological restrictions on the scale-up implementations of microalgae bioenergy. In this work, we explored the production of biohydrogen from several types of microalgae. The process of producing biohydrogen is affected by a number of variables, including pH, substrate concentration, the kinds of microalgal species, and others. The most recent studies and difficulties related to each stage of the biohydrogen manufacturing process are outlined. The synthesis of microalgal biohydrogen is improved using promising approaches that are discussed. Also, the specific future direction are covered. The possibility for microalgae-based production of biohydrogen to serve as an environmentally friendly and carbon-free biofuel solution that might handle the impending fuel scarcity was demonstrated. However, additional study is required on both the upstream and downstream processes of the synthesis of biohydrogen.

5.
Biotechnol Adv ; 68: 108209, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37467868

RESUMO

Glycoconjugates are the ubiquitous components of mammalian cells, mainly synthesized by covalent bonds of carbohydrates to other biomolecules such as proteins and lipids, with a wide range of potential applications in novel vaccines, therapeutic peptides and antibodies (Ab). Considering the emerging developments in glycoscience, renewable production of glycoconjugates is of importance and lignocellulosic biomass (LCB) is a potential source of carbohydrates to produce synthetic glycoconjugates in a sustainable pathway. In this review, recent advances in glycobiology aiming on glycoconjugates production is presented together with the recent and cutting-edge advances in the therapeutic properties and application of glycoconjugates, including therapeutic glycoproteins, glycosaminoglycans (GAGs), and nutraceuticals, emphasizing the integral role of glycosylation in their function and efficacy. Special emphasis is given towards the potential exploration of carbon neutral feedstocks, in which LCB has an emerging role. Techniques for extraction and recovery of mono- and oligosaccharides from LCB are critically discussed and influence of the heterogeneous nature of the feedstocks and different methods for recovery of these sugars in the development of the customized glycoconjugates is explored. Although reports on the use of LCB for the production of glycoconjugates are scarce, this review sets clear that the potential of LCB as a source for the production of valuable glycoconjugates cannot be underestimated and encourages that future research should focus on refining the existing methodologies and exploring new approaches to fully realize the potential of LCB in glycoconjugate production.


Assuntos
Glicoconjugados , Glicoproteínas , Animais , Biomassa , Glicoconjugados/química , Glicoconjugados/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , Carboidratos/química , Mamíferos
6.
J Environ Manage ; 344: 118614, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454449

RESUMO

In recent periods, a broad assortment of continual organic contaminants has been released into our natural water resources. Indeed, it is exceedingly poisonous and perilous to living things; thus, the elimination of these organic pollutants before release into the water bodies is vital. A variety of techniques have been utilized to remove these organic pollutants with advanced oxidation photocatalytic methods with zinc oxide (ZnO) nanoparticles being commonly used as a capable catalyst for contaminated water treatment. Nevertheless, its broad energy gap, which can be only stimulated under an ultraviolet (UV) light source, and high recombination pairs of electrons and holes limit their photocatalytic behaviors. However, numerous methods have been suggested to decrease its energy gap for visible regions. Including, the doping ZnO with metal ions (dopant) can be considered as an effectual route not only the reason for a movement of the absorption edges toward the higher (visible light) region but also to lower the electron-hole pair (e--h+) recombination. This review concentrated on the impact of dissimilar types of metal ions (dopants) on the advancement in the degradation performance of ZnO. So, this work demonstrates a vital review of contemporary attainments in the alteration of ZnO nanoparticles for organic pollutants eliminations. Besides, the effect of doping ions including transition metals, rare earth metals, and metal ions (substitutional and interstitial) concerning numerous types of altered ZnO are summarized. The photodegradation mechanisms for pristine and metal-modified ZnO nanoparticles are also conferred.


Assuntos
Poluentes Ambientais , Nanopartículas Metálicas , Óxido de Zinco , Zinco , Metais , Compostos Orgânicos , Corantes , Preparações Farmacêuticas , Íons , Catálise
7.
Environ Res ; 236(Pt 1): 116723, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37487925

RESUMO

The environment worldwide has been contaminated by toxic pollutants and chemicals through anthropogenic activities, industrial growth, and urbanization. Microbial remediation is seen to be superior compared to conventional remediation due to its low cost, selectivity towards particular metal ions, and high efficiency. One key strategy in enhancing microbial remediation is employing an immobilization technique with biochar as a carrier. This review provides a comprehensive summary of sources and toxic health effects of hazardous water pollutants on human health and the environment. Biochar enhances the growth and proliferation of contaminant-degrading microbes. The combined activity of biochar and microbes in eliminating the contaminants has gained the researcher's interest. Biochar demonstrates its biocompatibility by fostering microbial populations, the release of enzymes, and protecting the microbes from the acute toxicity of surrounding contaminants. The current review complies with the immobilization technique and remediation mechanisms of microbes in pollutant removal. This review also emphasizes the combined utilization, environmental adaptability, and the potential of the combined effect of immobilized microbes and biochar in the remediation of contaminants. Challenges and future outlooks are urged to commercialize the immobilized microbes-biochar interaction mechanism for environmental remediation.

8.
Chemosphere ; 335: 139158, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37290507

RESUMO

In this study, magnetite particles were successfully embedded in sodium carboxymethyl cellulose as beads using FeCl3 as the cross-linker in two step-method and it was used as a Fenton-like catalyst to degrade sulfamethoxazole in aqueous solution. The surface morphology and functional groups influence of the Na-CMC magnetic beads was studied using FTIR and SEM analysis. The nature of synthesized iron oxide particles was confirmed as magnetite using XRD diffraction. The structural arrangement of Fe3+ and iron oxide particles with CMC polymer was discussed. The influential factors for SMX degradation efficiency were investigated including the pH of the reaction medium (4.0), catalyst dosage (0.2 g L-1) and initial SMX concentration (30 mg L-1). The results showed that under optimal conditions 81.89% SMX degraded in 40 min using H2O2. The reduction in COD was estimated to be 81.2%. SMX degradation was initiated neither by the cleaving of C-S nor C-N followed by some chemical reactions. Complete mineralization of SMX was not achieved which could be due to an insufficient amount of Fe particles in CMC matrix that are responsible for the generation of *OH radicals. It was explored that degradation followed first order kinetics. Fabricated beads were successfully applied in a floating bed column in which the beads were allowed to float in sewage water spiked with SMX for 40 min. A total reduction of 79% of COD was achieved in treating sewage water. The beads could be used 2-3 times with significant reduction in catalytic activity. It was found that the degradation efficiency was attributed to a stable structure, textural property, active sites and *OH radicals.


Assuntos
Sulfametoxazol , Poluentes Químicos da Água , Sulfametoxazol/química , Peróxido de Hidrogênio/química , Óxido Ferroso-Férrico , Celulose , Esgotos , Água , Poluentes Químicos da Água/análise , Oxirredução
9.
Arch Microbiol ; 205(6): 238, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37193831

RESUMO

Kinases can be grouped into 20 families which play a vital role as a regulator of neoplasia, metastasis, and cytokine suppression. Human genome sequencing has discovered more than 500 kinases. Mutations of the kinase itself or the pathway regulated by kinases leads to the progression of diseases such as Alzheimer's, viral infections, and cancers. Cancer chemotherapy has made significant leaps in recent years. The utilization of chemotherapeutic agents for treating cancers has become difficult due to their unpredictable nature and their toxicity toward the host cells. Therefore, targeted therapy as a therapeutic option against cancer-specific cells and toward the signaling pathways is a valuable avenue of research. SARS-CoV-2 is a member of the Betacoronavirus genus that is responsible for causing the COVID pandemic. Kinase family provides a valuable source of biological targets against cancers and for recent COVID infections. Kinases such as tyrosine kinases, Rho kinase, Bruton tyrosine kinase, ABL kinases, and NAK kinases play an important role in the modulation of signaling pathways involved in both cancers and viral infections such as COVID. These kinase inhibitors consist of multiple protein targets such as the viral replication machinery and specific molecules targeting signaling pathways for cancer. Thus, kinase inhibitors can be used for their anti-inflammatory, anti-fibrotic activity along with cytokine suppression in cases of COVID. The main goal of this review is to focus on the pharmacology of kinase inhibitors for cancer and COVID, as well as ideas for future development.


Assuntos
COVID-19 , Neoplasias , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , SARS-CoV-2 , Neoplasias/tratamento farmacológico , Citocinas
10.
Environ Pollut ; 329: 121635, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37085105

RESUMO

Synthesis and characterization of highly active cross-linked laccase aggregates (CLLAs) were performed and evaluated for removal of pentachlorophenol and phenanthrene from lignocellulosic biorefinery wastewater. Laccase from Tramates versicolor MTCC 138 was insolubilized as CLLAs via precipitation with 70% ammonium sulphate and simultaneous cross-linking with 5 mM glutaraldehyde to obtain activity recovery of 89.1%. Compared to the free laccase, the pH and thermal stability of the prepared CLLAs were significantly higher. At a high temperature of 60 °C, free laccase had a half-life of 0.25 h, while CLLAs had a half-life of 6.2 h. In biorefinery wastewater (pH 7.0), the free and CLLAs were stored for 3 day at a temperature of 30 °C. Free laccase completely lost their initial activity after 60 h; however, the CLLAs retained 39% activity till 72 h. Due to its excellent stability, free laccase and CLLAs were assessed for removing pentachlorophenol and phenanthrene in wastewater. CLLAs could remove 51-58% of pentachlorophenol (PCP) and phenanthrene (PHE) in 24 h. Biosurfactants, including surfactin, sophorolipid, and rhamnolipid, were assessed for their aptitude to improve the removal of organic contaminants in wastewater. Biorefinery wastewater incubated with all surfactants enhanced PCP and PHE removal compared to the no-surfactant controls. Further, 1 µM rhamnolipid significantly amplified pentachlorophenol and phenanthrene removal to 81-93% for free laccase and CLLAs, respectively.


Assuntos
Pentaclorofenol , Fenantrenos , Lacase/química , Águas Residuárias
11.
Chemosphere ; 330: 138694, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37062389

RESUMO

India faces high incidents of waterborne disease outbreaks owing to their limited access to safe drinking water. In many ways, the effort to improve the quality of drinking water is performed, and it has been keenly monitored. Among those, the disinfection of drinking water is considered a necessary and important step as it controls the microbial population. Chlorination is the most practiced (greater than 80%) disinfection process in India, and it is known to generate various disinfection byproducts (DBPs). Although the toxicity and trend of DBPs are regularly monitored and investigated in most countries, still in India, the research is at the toddler level. This review summarizes i) the status of drinking water disinfection in India, ii) types of disinfection processes in centralized water treatment plants, iii) concentrations and occurrence patterns of DBPs in a different region of India, iv) a literature survey on the toxicity of DBPs, and v) removal methodologies or alternative technologies to mitigate the DBPs formation. Overall, this review may act as a roadmap to understand the trend of disinfection practices in India and their impacts on securing the goal of safe drinking water for all.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Desinfecção/métodos , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Halogenação , Índia , Trialometanos/análise
12.
Environ Res ; 221: 115306, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36682444

RESUMO

Disposal of biodegradable waste of seashells leads to an environmental imbalance. A tremendous amount of wastes produced from flourishing shell fish industries while preparing crustaceans for human consumption can be directed towards proper utilization. The review of the present study focuses on these polysaccharides from crustaceans and a few important industrial applications. This review aimed to emphasize the current research on structural analyses and extraction of polysaccharides. The article summarises the properties of chitin, chitosan, and chitooligosaccharides and their derivatives that make them non-toxic, biodegradable, and biocompatible. Different extraction methods of chitin, chitosan, and chitooligosaccharides have been discussed in detail. Additionally, this information outlines possible uses for derivatives of chitin, chitosan, and chitooligosaccharides in the environmental, pharmaceutical, agricultural, and food industries. Additionally, it is essential to the textile, cosmetic, and enzyme-immobilization industries. This review focuses on new, insightful suggestions for raising the value of crustacean shell waste by repurposing a highly valuable material.


Assuntos
Quitosana , Animais , Humanos , Quitosana/química , Quitina/química , Alimentos Marinhos , Agricultura
13.
Environ Res ; 220: 115252, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36632883

RESUMO

Remediation of environmental oil pollution with the usage of fungal organisms has proven to be a successful cleanup bioremediation method for organic contaminants. To investigate the breakdown of oil pollutants in water environments, biosurfactant-producing fungi have been isolated from oil-polluted soil samples. 16s rRNA sequencing technique was performed to identify the fungal organism and phylogenetic tree has been constructed. A variety of biosurfactant screening tests have demonstrated the better biosurfactant producing ability of fungi. The emulsion's stability, which is essential for the biodegradation process, was indicated by the emulsification index of 68.48% and emulsification activity of 1.3. In the isolated biosurfactant, important functional groups such as amino groups, lipids, and sugars were found according to thin layer chromatography analysis with a maximum retention value of 0.85. A maximum oil degradation of around 64% was observed with immobilized beads within 12 days. The half-life, and degradation removal rate constant of 20.21 days and 0.03 day-1, respectively, have been determined by the degradation kinetic analysis. GCMS analysis confirmed the highly degraded hydrocarbons such as nonanoic acid and pyrrolidine. The immobilized fungi exhibit better oil biodegradability in aqueous solutions.


Assuntos
Petróleo , Poluentes do Solo , Biodegradação Ambiental , Ecossistema , Biomassa , Cinética , Filogenia , RNA Ribossômico 16S , Hidrocarbonetos , Água , Fungos/genética , Petróleo/análise , Petróleo/metabolismo , Tensoativos/análise , Poluentes do Solo/análise
14.
Chemosphere ; 314: 137713, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36596329

RESUMO

Biofortification is a revolutionary technique for improving plant nutrition and alleviating human micronutrient deficiency. Fertilizers can help increase crop yield and growth, but applying too much fertilizer can be a problem because it leads to the release of greenhouse gases and eutrophication. One of the major global hazards that affects more than two million people globally is the decreased availability of micronutrients in food crops, which results in micronutrient deficiencies or "hidden hunger" in people. Micronutrients, like macronutrients, perform a variety of roles in plant and human nutrition. This review has highlighted the importance of micronutrients as well as their advantages. The uneven distribution of micronutrients in geological areas is not the only factor responsible for micronutrient deficiencies, other parameters including soil moisture, temperature, texture of the soil, and soil pH significantly affects the micronutrient concentration and their availability in the soil. To overcome this, different biofortification approaches are assessed in the review in which microbes mediated, Agronomic approaches, Plant breeding, and transgenic approaches are discussed. Hidden hunger can result in risky health conditions and diseases such as cancer, cardiovascular disease, osteoporosis, neurological disorders, and many more. Microbes-mediated biofortification is a novel and promising solution for the bioavailability of nutrients to plants in order to address these problems. Biofortification is cost effective, feasible, and environmentally sustainable. Bio-fortified crops boost our immunity, which helps us to combat these deadly viruses. The studies we discussed in this review have demonstrated that they can aid in the alleviation of hidden hunger.


Assuntos
Biofortificação , Saúde Global , Humanos , Biofortificação/métodos , Melhoramento Vegetal , Micronutrientes , Solo , Produtos Agrícolas
15.
Environ Res ; 220: 115200, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36596355

RESUMO

The nitrogen-fixing bacterium has great prospects in replacing synthetic fertilizers with biofertilizers for plant growth. It would be a useful tool in eradicating chemical fertilizers from use. Five nitrogen-fixing bacteria were isolated from the Tea and Groundnut rhizosphere soil out of which RSKVG 02 proved to be the best. The optimized condition of RSKVG 02 was found to be pH 7 at 30 °C utilizing 1% glucose and 0.05% ammonium sulfate as the sole carbon and nitrogen source. Plant growth-promoting traits such as IAA and ammonia were estimated to be 82.97 ± 0.01254a µg/ml and 80.49 ± 0.23699a mg/ml respectively. Additionally, their phosphate and potassium solubilization efficiency were evaluated to be 46.69 ± 0.00125 b mg/ml and 50.29 ± 0.000266 mg/ml. Morphological, and biochemical methods characterized the isolated bacterial culture, and molecularly identified by 16 S rRNA sequencing as Rhizobium mayense. The isolate was further tested for its effects on the growth of Finger millet (Eleusine coracana) and Green gram (Vigna radiata) under pot conditions. The pot study experiments indicated that the bacterial isolates used as bio inoculants increased the total plant growth compared to the control and their dry weight showed similar results. The chlorophyll content of Green gram and Finger millet was estimated to be 19.54 ± 0.2784a mg/L and 15.3 ± 0.0035 mg/L which suggested that Rhizobium sp. Possesses high nitrogenase activity. The enzyme activity proved to use this bacterium as a biofertilizer property to enhance soil fertility, efficient farming, and an alternative chemical fertilizer. Therefore, Rhizobium mayense can be potentially used as an efficient biofertilizer for crop production and increase yield and soil fertility.


Assuntos
Bactérias Fixadoras de Nitrogênio , Rhizobium , Solo/química , Bactérias Fixadoras de Nitrogênio/genética , Rizosfera , Fertilizantes , Raízes de Plantas/microbiologia , Rhizobium/genética , Bactérias , Nitrogênio , Microbiologia do Solo
16.
Chemosphere ; 318: 137919, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36702418

RESUMO

Industrial wastewater treatment techniques are one of the biggest challenges of the scientific community that necessitate an increased consciousness to address water scarcity worldwide. Herein, an eco-friendly and cost-effective process was demonstrated to cope with tannery, textile and pharmaceutical dye wastes through the co-precipitation of highly reusable Fe-doped CdAl2O4 samples. The XRD studies exposed the space group R 3‾ with no secondary phase step being found for all samples. The outcomes of optical absorbance spectra demonstrate that Fe doping diminished the energy gap from 3.66 to 1.67 eV. HR-TEM images of existing spherical particles and some of the particles' rod-like structures with little agglomeration were found for Fe (0.075 M) doped CdAl2O4 nanoparticles. The PL emission outcomes show that Fe doping effectively prevented the charge carrier's recombination in CdAl2O4 during photocatalysis. All Fe-doped CdAl2O4 samples demonstrated higher photodegradation behaviors towards the effectual degradation of both dye solutions as compared to pure CdAl2O4 samples. Particularly, Fe (0.075 M)-doped CdAl2O4 samples exhibited improved photodegradation performance of 93 and 95% for both dye solutions. The amount of photodegradation was noticed to rely on dye pH, irradiation time, catalyst dosage, initial dye amount, and reactive species. The recyclability of the Fe (0.075 M) doped CdAl2O4 nanoparticles denotes that 78 and 82% of BB and BG were removed up to the 6th run of usage. The outcomes of trapping tests,.OH- and h+ radicals were the major Scavenging in the photodegradation reaction. COD studies affirmed the whole mineralization of BB and BG dye molecules. It is expected that our present examination could offer to improve various spinal oxide materials for the photodegradation activity of pharmaceutical contaminants and environmental issues and can also resolve energy storage applications.


Assuntos
Poluentes Ambientais , Nanopartículas , Nanopartículas/química , Fotólise , Catálise , Concentração de Íons de Hidrogênio , Preparações Farmacêuticas
17.
Mar Pollut Bull ; 188: 114580, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36657228

RESUMO

Microplastics have been identified in all living forms including human beings, the present need is to restrain its spread and devise measures to remediate microplastics from polluted ecosystems. In this regard, the present review emphasizes on the occurrence, sources detection and toxic effects of microplastics in various ecosystems. The removal of microplastics is prevalent by various physico-chemical and biological methods, although the removal efficiency by biological methods is low. It has been noted that the degradation of plastics by insect gut larvae is a well-known aspect, however, the underlying mechanism has not been completely identified. Studies conducted have shown the magnificent contribution of gut microbiota, which have been isolated and exploited for microplastic remediation. This review also focuses on this avenue, as it highlights the contribution of insect gut microbiota in microplastic degradation along with challenges faced and future prospects in this area.


Assuntos
Microbioma Gastrointestinal , Poluentes Químicos da Água , Humanos , Animais , Microplásticos , Plásticos , Ecossistema , Poluentes Químicos da Água/análise , Larva , Insetos
18.
Chemosphere ; 313: 137614, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36565768

RESUMO

Development of science has taken over our lives and made it mandatory to live with science. Synthetic technology takes more than it has given for our welfare. In the process of meeting the demand of the consumers, industries supported synthetic products to meet the same. One such sector that employs synthetic azo dyes for food coloring is the food industry. The result of the process is the production of a variety of colored foods which looks more appealing and palatable. The process not only meets the consumer's demand it also has an impact on customers' health because the consumption of azo-toxic dye-treated foods regularly or in direct contact with synthetic azo dyes can also cause severe human health consequences. Nanotechnology is a rapidly evolving branch of research in which nanosensors are being developed for a variety of applications, including sensing various azo-toxic dyes in food products, which provides a wider scope in the future, with the innovation in designing different nanosensors. The current review focuses on the different types of nanosensors, their key role in sensing, and the sensing of azo toxic dyes using nanosensors, their advantages over other sensors, applications of nanomaterials, and the health impacts of azo dyes on humans, appropriate parameters for maximum permissible limits, and an Acceptable Daily Intake (ADI) of azo toxic dye to be followed. The regulations followed on the application of colorants to the food are also elaborated. The review also focuses on the application of enzyme-based biosensors in detecting azo dyes in food products.


Assuntos
Corantes , Nanoestruturas , Humanos , Corantes/toxicidade , Compostos Azo/toxicidade , Nanoestruturas/toxicidade , Nível de Efeito Adverso não Observado
19.
Environ Res ; 216(Pt 1): 114463, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36208779

RESUMO

An electrochemical sensor detection of sulfamethoxazole was performed using a copper oxide Molybdenum sulfide modified glassy carbon electrode using Molybdenum sulfide (CuO/MoS2) functionalization. As part of the characterization process, materials were characterized via cyclic voltammetry (CV), Square wave voltammetry (SWV), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD) and scanning electron microscopy (SEM). To optimize the performance of the experiment, parameters like the scan rate and pH, the electrolytes study, the stability, the comparative study and repeatability were optimized. In comparison to CuO, MoS2 and bare Glassy carbon electrode (GCE), an electrochemical sensor that incorporated CuO/MoS2 exhibited exceptional electrochemical performance. CuO/MoS2 modified electrodes showed a higher peak current for oxidation compared with bare, CuO and MoS2 modified electrodes, which demonstrated enhanced electrochemical conductivity for detection of SMX by minimizing oxidation potential from +0.18 V to +0.10 V. In the range of 100-800 µl SMX concentrations, the peak current linearly correlated with the concentration of SMX. In the calibration plot, the modified electrode showed linearity under ideal circumstances for SMX concentrations starting at 0.3 µM. This study investigated the presence of SMX with a detection limit of 0.34 Pg/L. CuO/MoS2 based electrochemical sensor, according to our analysis, are potentially useful in applications requiring the detection of trace amounts of SMX.


Assuntos
Cobre , Nanocompostos , Cobre/química , Molibdênio/química , Carbono/química , Sulfametoxazol , Técnicas Eletroquímicas/métodos , Nanocompostos/química , Eletrodos , Óxidos , Limite de Detecção
20.
Environ Res ; 216(Pt 2): 114464, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36208785

RESUMO

Accidents involving diesel oil spills are prevalent in sea- and coastal regions. Polycyclic aromatic hydrocarbons (PAHs) can be adsorbed in soil and constitute a persistent contaminant due to their poor water solubility and complex breakdown. PAHs pollution is a pervasive environmental concern that poses serious risks to human life and ecosystems. Thus, it is the need of the hour to degrade and decontaminate the toxic pollutant to save the environment. Among all the available techniques, microbial degradation of the PAHs is proving to be greatly beneficial and effective. Bioremediation overcomes the drawbacks of most physicochemical procedures by eliminating numerous organic pollutants at a lower cost in ambient circumstances and has therefore become a prominent remedial option for pollutant removal, including PAHs. In the present study, we have studied the degradation of Low molecular Weight and High Molecular Weight PAH in combination by bacterial strains isolated from a marine environment. Optimum pH, temperature, carbon, and nitrogen sources, NaCl concentrations were found for efficient degradation using the isolated bacterial strains. At 250 mg/L concentration of the PAH mixture an 89.5% degradation was observed. Vibrio algiolytcus strains were found to be potent halotolerant bacteria to degrade complex PAH into less toxic simple molecules. GC-MS and FTIR data were used to probe the pathway of degradation of PAH.


Assuntos
Poluentes Ambientais , Hidrocarbonetos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Humanos , Ecossistema , Biodegradação Ambiental , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Bactérias , Hidrocarbonetos Aromáticos/metabolismo , Redes e Vias Metabólicas , Poluentes Ambientais/metabolismo , Poluentes do Solo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...