Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2628: 155-172, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36781784

RESUMO

Blood and blood-derived components such as plasma and serum are considered as excellent resources that can be utilized to understand the biology of higher eukaryotic organisms including human beings. In research and clinical studies, blood plasma and serum are used to monitor health conditions, progression, and severity of diseases. Many of the disease-related studies utilize plasma and serum due to their disease relevance and accessibility as they can be collected from patients and healthy donors through minimally invasive approaches. Despite its significance, the unique proteome composition, complexity, wide dynamic range, and heterogeneity of the plasma proteins highlight critical factors that challenge the existing analytical technologies. Depletion of high abundant proteins is one among the accepted methods that can simplify the plasma proteome complexity; however, collateral loss of critical proteins should be anticipated. Selective protein enrichment seems to be a better alternative to depletion. Glycosylation of proteins is a dominant posttranslational modification known for its biological as well as diagnostic and therapeutic potential. Most of the reported therapeutic targets for diagnosis and monitoring are found to be glycosylated. In this chapter, a protocol for selective and reproducible enrichment of glycoproteins from blood plasma followed by identification through liquid chromatography high-resolution mass spectrometry has been documented.


Assuntos
Glicoproteínas , Proteoma , Humanos , Proteoma/metabolismo , Cromatografia Líquida/métodos , Glicoproteínas/química , Espectrometria de Massas/métodos , Plasma/química
2.
Sci Rep ; 13(1): 896, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650197

RESUMO

Chloroplasts have evolved from photosynthetic cyanobacteria-like progenitors through endosymbiosis. The chloroplasts of present-day land plants have their own transcription and translation systems that show several similarities with prokaryotic organisms. A remarkable feature of the chloroplast translation system is the use of non-AUG start codons in the protein synthesis of certain genes that are evolutionarily conserved from Algae to angiosperms. However, the biological significance of such use of non-AUG codons is not fully understood. The present study was undertaken to unravel the significance of non-AUG start codons in vivo using the chloroplast genetic engineering approach. For this purpose, stable transplastomic tobacco plants expressing a reporter gene i.e. uidA (GUS) under four different start codons (AUG/UUG/GUG/CUG) were generated and ß-glucuronidase (GUS) expression was compared. To investigate further the role of promoter sequences proximal to the start codon, uidA was expressed under two different chloroplast gene promoters psbA and psbC that use AUG and a non-AUG (GUG) start codons, respectively, and also showed significant differences in the DNA sequence surrounding the start codon. Further, to delineate the role of RNA editing that creates AUG start codon by editing non-AUG codons, if any, which is another important feature of the chloroplast transcription and translation system, transcripts were sequenced. In addition, a proteomic approach was used to identify the translation initiation site(s) of GUS and the N-terminal amino acid encoded when expressed under different non-AUG start codons. The results showed that chloroplasts use non-AUG start codons in combination with the translation initiation site as an additional layer of gene regulation to over-express proteins that are required at high levels due to their high rates of turnover.


Assuntos
Biossíntese de Proteínas , Proteômica , Códon de Iniciação/genética , Biossíntese de Proteínas/genética , Códon/genética , Cloroplastos/genética , Iniciação Traducional da Cadeia Peptídica/genética
3.
Biochem Biophys Res Commun ; 591: 110-117, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-35007834

RESUMO

Ascorbate is an important cellular antioxidant that gets readily oxidized to dehydroascorbate (DHA). Recycling of DHA is therefore paramount in the maintenance of cellular homeostasis and preventing oxidative stress. Dehydroascorbate reductases (DHARs), in conjunction with glutathione (GSH), carry out this vital process in eukaryotes, among which plant DHARs have garnered considerable attention. A detailed kinetic analysis of plant DHARs relative to their human counterparts is, however, lacking. Chloride intracellular channels (HsCLICs) are close homologs of plant DHARs, recently demonstrated to share their enzymatic activity. This study reports the highest turnover rate for a plant DHAR from stress adapted Pennisetum glaucum (PgDHAR). In comparison, HsCLICs 1, 3, and 4 reduced DHA at a significantly lower rate. We further show that the catalytic cysteine from both homologs was susceptible to varying degrees of oxidation, validated by crystal structures and mass-spectrometry. Our findings may have broader implications on crop improvement using pearl millet DHAR vis-à-vis discovery of cancer therapeutics targeting Vitamin-C recycling capability of human CLICs.


Assuntos
Ácido Ascórbico/metabolismo , Oxirredutases/metabolismo , Pennisetum/enzimologia , Sequência de Aminoácidos , Biocatálise , Domínio Catalítico , Sequência Conservada , Cristalografia por Raios X , Cisteína/metabolismo , Humanos , Cinética , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Oxirredução , Oxirredutases/química
4.
Environ Sci Pollut Res Int ; 28(5): 5495-5519, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32968904

RESUMO

Groundwater and saline water interaction is the most common processes in the coastal aquifers that alters the quality of aquifer waters. The quaternary alluvium aquifer system is a significant water resource of southeast coastal Tamil Nadu that provides water supplies for industrial, agriculture, and domestic utilities. Hydrogeochemical investigations were attempted to analyze groundwater-saline water interactions for which a total of three hundred and sixty samples representing surface water, pore water, and groundwater samples collected from three significant locations (location A, B, and C) and analyzed for major ion concentrations. Piper plot infers surface and pore water samples representing saline water type (Na-Cl) in all the three locations due to tidal variation and sand dominant surface layer. Groundwater samples represent (Ca-HCO3) type at location A due to fresh groundwater discharge, mixed or subterranean estuary (Ca, Mg-Cl, HCO3) at location B due to conversion of freshwater (Ca-HCO3) at low tide to saline water (Na-Cl) at high tide, and saline (Na-Cl) water at location C due to proximity and influence of tides. The Cl-/HCO3- vs. Cl- plot represents two water types, such as fresh groundwater (0.5) and strongly affected by seawater intrusion (6.6). The plot (Ca2++Mg2+)/(K++Na+) vs. log Cl- represents freshwater in location A, mixing in location B, and saline water in location C. Groundwater samples observed to be fresh in location A (20.0 km away from the coast), recirculated in location B (9.0 km away from the coast), and saline in location C (0.5 km away from the coast).


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental , Índia , Salinidade , Poluentes Químicos da Água/análise
5.
J Proteomics ; 209: 103504, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31465861

RESUMO

Among the blood cancers, 13% mortality is caused by Multiple myeloma (MM) type of hematological malignancy. In spite of therapeutic advances in chemotherapy treatment, still MM remains an incurable disease is mainly due to emergence of chemoresistance. At present time, FDA approved bortezomib is the first line drug for MM treatment. However, like other chemotherapy, MM patients are acquiring resistance against bortezomib. The present study aims to identify and validate bortezomib resistant protein targets in MM using iTRAQ and label free quantitative proteomic approaches. 112 differentially expressed proteins were commonly found in both approaches with similar differential expression pattern. Exportin-1 (XPO1) protein was selected for further validation as its significant high expression was observed in both iTRAQ and label free analysis. Bioinformatic analysis of these common differentially expressed proteins showed a clear cluster of proteins such as SMC1A, RCC2, CSE1, NUP88, NUP50, TPR, HSPA14, DYNLL1, RAD21 and RANBP2 being associated with XPO1. Functional studies like cell count assay, flow cytometry assay and soft agar assay proved that XPO1 knock down in RPMI 8226R cell line results in re-sensitization to bortezomib drug. The mass spectrometry data are available via ProteomeXchange with identifier PXD013859. BIOLOGICAL SIGNIFICANCE: Multiple myeloma (MM) is a type of hematological malignancy which constitutes about 13% of all blood cell related malignancies. Chemoresistance is one of the major obstacles for the successful treatment for MM. Bortezomib is a first proteasome inhibitor drug, widely used in MM treatment. The present study aims to identify and validate bortezomib resistant protein targets in MM. Here, we identified 112 candidate proteins to be associated with bortezomib resistance using global quantitative proteomic analysis. Among these candidate proteins, we show that XPO1 plays crucial role in emerging bortezomib resistance using functional studies like cell count assay, flow cytometry assay and soft agar assay. XPO1 could be a potential therapeutic target for MM and development of inhibitors of XPO1 might help to cure MM.


Assuntos
Bortezomib/farmacologia , Resistencia a Medicamentos Antineoplásicos , Carioferinas/fisiologia , Mieloma Múltiplo/tratamento farmacológico , Proteômica/métodos , Receptores Citoplasmáticos e Nucleares/fisiologia , Antineoplásicos/farmacologia , Bortezomib/uso terapêutico , Contagem de Células , Linhagem Celular Tumoral , Biologia Computacional , Citometria de Fluxo , Técnicas de Silenciamento de Genes , Humanos , Carioferinas/genética , Receptores Citoplasmáticos e Nucleares/genética , Proteína Exportina 1
6.
PLoS One ; 14(4): e0215123, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30969995

RESUMO

Mycobacterium tuberculosis (Mtb) secretes proteases and peptidases to subjugate its host. Out of its sixty plus proteases, atleast three are reported to reach host macrophages. In this study, we show that Mtb also delivers a lysyl alanine aminopeptidase, PepN (Rv2467) into host macrophage cytosol. Our comparative in silico analysis shows PepNMtb highly conserved across all pathogenic mycobacteria. Non-pathogenic mycobacteria including M. smegmatis (Msm) also encode pepN. PepN protein levels in both Mtb (pathogenic) and Msm (non-pathogenic) remain uniform across all in vitro growth phases. Despite such tight maintenance of PepNs' steady state levels, upon supplementation, Mtb alone allows accumulation of any excessive PepN. In contrast, Msm does not. It not only proteolyzes, but also secretes out the excessive PepN, be it native or foreign. Interestingly, while PepNMtb is required for modulating virulence in vivo, PepNMsm is essential for Msm growth in vitro. Despite such essentiality difference, both PepNMtb and PepNMsm harbor almost identical N-terminal M1-type peptidase domains that significantly align in their amino acid sequences and overlap in their secondary structures. Their C-terminal ERAP1_C-like domains however align much more moderately. Our in vitro macrophage-based infection experiments with MtbΔpepN-expressing pepNMsm reveals PepNMsm also retaining the ability to reach host cytosol. Lastly, but notably, we determined the PepNMtb and PepNMsm interactomes and found them to barely coincide. While PepNMtb chiefly interacts with Mtb's secreted proteins, PepNMsm primarily coimmunoprecipitates with Msm's housekeeping proteins. Thus, despite high sequence homology and several common properties, our comparative analytical study reveals host-centric traits of pathogenic and bacterial-centric traits of non-pathogenic PepNs.


Assuntos
Aminopeptidases/metabolismo , Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/metabolismo , Aminopeptidases/química , Aminopeptidases/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , Biologia Computacional , Técnicas de Inativação de Genes , Humanos , Macrófagos/citologia , Macrófagos/microbiologia , Macrófagos/patologia , Espectrometria de Massas , Microscopia de Fluorescência , Mutagênese Sítio-Dirigida , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/patogenicidade , Peptídeos/análise
7.
Curr Top Med Chem ; 18(30): 2584-2598, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30499398

RESUMO

Chemoresistance is one of the major hurdles in cancer treatment leading to recurrence of cancer and affects the overall survival of patients. Cancer chemoresistance can be associated with various phenomena including modulation of vital cellular pathways. Unrevealing these alterations could provide a better understanding of chemoresistance and assist in the identification of new targets to overcome it. Recent advances in the field of proteomics and metabolomics have substantially helped in the identification of potential targets for chemoresistance in various cancers. This review highlights the potential of proteomics and metabolomics research to explore the putative targets associated with cancer chemoresistance with a special focus on Multiple Myeloma (MM). MM is a type of hematological malignancy which constitutes about 13% of all blood cell cancers. The therapeutic advancements for MM have increased the median overall survival rate to over 3-fold in the last one and half decade. Although in recent times, significant improvements in the overall survival rate of MM are achieved, MM remains an incurable disease with unpredictable refractory mechanisms. In spite of therapeutic advances, chemoresistance thrives to be a major hurdle in the treatment of multiple myeloma which demands a better understanding of chemoresistance. In this review, we have attempted to highlight the potential applications of proteomics and metabolomics research in the understanding of chemoresistance in MM.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Metabolômica , Mieloma Múltiplo/tratamento farmacológico , Proteômica , Animais , Antineoplásicos/química , Humanos , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia
8.
Virus Res ; 240: 166-174, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28847700

RESUMO

The cellular secretory vesicles known as 'exosomes' have emerged as key player in intercellular transport and communication between different eukaryotic in order to maintain body homeostasis. Many pathogenic viruses utilize exosome pathway to efficiently transfer bioactive components from infected cells to naïve cells. Here, we show that HBx can tweak the exosome biogenesis machinery both by enhancing neutral sphingomyelinase2 activity as well as by interacting with exosomal biomarkers such as neutral sphingomyelinase2, CD9 and CD81. The nano particle tracking analysis revealed enhanced secretion of exosomes by the HBx-expressing cells while confocal studies confirmed the co-localization of HBx with CD9 and CD63. Importantly, we observed the encapsulation of HBx mRNA and protein in these exosomes besides some other qualitative changes. The exosomal cargo secreted by HBx-expressing cells had a profound effect on the recipient hepatic cells including creation of a milieu conducive for cellular-transformation. Thus, the present study unfolds a novel role of HBx in intercellular communication by facilitating horizontal transfer of viral gene products and other host factors via exosomes in order to support viral spread and pathogenesis.


Assuntos
Exossomos/virologia , Vírus da Hepatite B/metabolismo , Hepatite B/virologia , Fígado/virologia , Transativadores/metabolismo , Proteínas Virais/metabolismo , Exossomos/genética , Exossomos/metabolismo , Hepatite B/genética , Hepatite B/metabolismo , Vírus da Hepatite B/genética , Vírus da Hepatite B/isolamento & purificação , Interações Hospedeiro-Patógeno , Humanos , Fígado/metabolismo , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Tetraspanina 28/genética , Tetraspanina 28/metabolismo , Tetraspanina 29/genética , Tetraspanina 29/metabolismo , Transativadores/genética , Proteínas Virais/genética , Proteínas Virais Reguladoras e Acessórias
9.
Plant Biotechnol J ; 14(6): 1438-55, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26799171

RESUMO

Cotton bollworm, Helicoverpa armigera, is a major insect pest that feeds on cotton bolls causing extensive damage leading to crop and productivity loss. In spite of such a major impact, cotton plant response to bollworm infection is yet to be witnessed. In this context, we have studied the genome-wide response of cotton bolls infested with bollworm using transcriptomic and proteomic approaches. Further, we have validated this data using semi-quantitative real-time PCR. Comparative analyses have revealed that 39% of the transcriptome and 35% of the proteome were differentially regulated during bollworm infestation. Around 36% of significantly regulated transcripts and 45% of differentially expressed proteins were found to be involved in signalling followed by redox regulation. Further analysis showed that defence-related stress hormones and their lipid precursors, transcription factors, signalling molecules, etc. were stimulated, whereas the growth-related counterparts were suppressed during bollworm infestation. Around 26% of the significantly up-regulated proteins were defence molecules, while >50% of the significantly down-regulated were related to photosynthesis and growth. Interestingly, the biosynthesis genes for synergistically regulated jasmonate, ethylene and suppressors of the antagonistic factor salicylate were found to be up-regulated, suggesting a choice among stress-responsive phytohormone regulation. Manual curation of the enzymes and TFs highlighted the components of retrograde signalling pathways. Our data suggest that a selective regulatory mechanism directs the reallocation of metabolic resources favouring defence over growth under bollworm infestation and these insights could be exploited to develop bollworm-resistant cotton varieties.


Assuntos
Genoma de Planta , Gossypium/genética , Mariposas/fisiologia , Imunidade Vegetal/genética , Animais , Cálcio/metabolismo , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Genes de Plantas , Estudo de Associação Genômica Ampla , Gossypium/metabolismo , Interações Hospedeiro-Parasita , Redes e Vias Metabólicas , Oxirredução , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteômica , Transdução de Sinais , Transcriptoma
10.
Data Brief ; 5: 717-25, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26693171

RESUMO

The data presented here delineates the glycoproteome component in the elongating cotton fiber cells attained using complementary proteomic approaches followed by protein and N-linked glycosylation site identification (Kumar et al., 2013) [1]. Utilizing species specific protein sequence databases in proteomic approaches often leads to additional information that may not be obtained using cross-species databases. In this context we have reanalyzed our glycoproteome dataset with the Gossypium arboreum, Gossypium raimondii (version 2.0) and Gossypium hirsutum protein databases that has led to the identification of 21 N-linked glycosylation sites and 18 unique glycoproteins that were not reported in our previous study. The 1D PAGE and solution based glycoprotein identification data is publicly available at the ProteomeXchange Consortium via the PRIDE partner repository (Vizcaíno et al., 2013) [2] using the dataset identifier PXD000178 and the 2D PAGE based protein identification and glycopeptide approach based N-linked glycosylation site identification data is available at the ProteomeXchange Consortium via the PRIDE partner repository (Vizcaíno et al., 2013) [2] using the dataset identifier PXD002849.

11.
J Proteomics ; 119: 100-11, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25661041

RESUMO

Mammary gland is an exocrine and sebaceous gland made up of branching network of ducts that end in alveoli. Milk is synthesized in the alveoli and secreted into alveolar lumen. Mammary gland represents an ideal system for the study of organogenesis that undergoes successive cycles of pregnancy, lactation and involution. To gain insights on the molecular events that take place in pubertal and lactating mammary gland, we have identified 43 differentially expressed proteins in mammary tissue of heifer (non-lactating representing a virgin mammary gland), and lactating buffaloes (Bubalus bubalis) by 2D-difference gel electrophoresis (2D-DIGE) and mass spectrometry. Twenty one proteins were upregulated during lactation whereas 8 proteins were upregulated in heifer mammary gland significantly (p<0.05). Bioinformatics analyses of the identified proteins showed that a majority of the proteins are involved in metabolic processes. The differentially expressed proteins were validated by real-time PCR and Western blotting. We observed differential expressions of certain new proteins including EEF1D, HSPA5, HSPD1 and PRDX6 during lactation which have not been reported before. The differentially expressed proteins were mapped to available biological pathways and networks involved in lactation. This study signifies the importance of some proteins which are preferentially expressed during lactation and in heifer mammary gland. BIOLOGICAL SIGNIFICANCE: This work is important because we have generated information in water buffalo (B. bubalis) for the first time which is the major milk producing animal in Indian Subcontinent. Out of a present production of 133milliontons of milk produced in India, contribution of buffalo milk is around 54%. Its physiology is somewhat different from the lactating cows. Buffalo milk composition varies from cow milk in terms of higher fat and total solid content, which confers an advantage in preparation of specialized cheese, curd and other dairy products. Being a major milk producing animal in India it is highly essential to understand the lactation associated proteins in the mammary gland of buffalo. In the present investigation our attempt has been to identify new protein evidences which are expressed in lactating buffalo mammary gland and have not been reported before. The findings reported in the present study will help in understanding the lactation biology of buffalo mammary gland in particular and the mammary gland biology in general.


Assuntos
Búfalos/metabolismo , Regulação da Expressão Gênica/fisiologia , Lactação/fisiologia , Glândulas Mamárias Animais/metabolismo , Gravidez/metabolismo , Proteoma/metabolismo , Animais , Feminino
12.
Br J Nurs ; 23(13): 704-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25072331

RESUMO

AIM: This study aimed to determine the effectiveness of an educational programme on the identification and management of delirium by nurses in the medical wards of a tertiary care hospital in South India. METHOD: A non-equivalent controlled pre- and post-intervention research design was used. The sample size of nurses through convenient sampling was 15 in the experimental group and 17 in the comparison group. A questionnaire was used to assess the knowledge of nurses and an observation checklist was used to assess practice. The Confusion Assessment METHOD ( Inouye et al, 1990 ) was used to detect delirium among older people who were hospitalised. Data collection was carried out over a 6-week period. RESULTS: There was a significant improvement in the knowledge (p<0.001) and practice (p<0.003) of nurses in the experimental group following the educational programme.


Assuntos
Delírio/diagnóstico , Delírio/enfermagem , Educação Continuada em Enfermagem , Recursos Humanos de Enfermagem Hospitalar/educação , Adulto , Idoso , Idoso de 80 Anos ou mais , Currículo , Feminino , Avaliação Geriátrica , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Índia , Masculino , Pessoa de Meia-Idade , Relações Enfermeiro-Paciente , Avaliação de Programas e Projetos de Saúde , Reino Unido , Adulto Jovem
13.
Biochemistry ; 53(28): 4685-95, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-24971648

RESUMO

Many proteins rely on disulfide bonds formed between pairs of cysteines for the stability of their folded state and to keep regulatory control over their functions. The hepatitis B virus-encoded HBx oncoprotein is known to perform an overwhelming array of functions in the cell and has been implicated in the development of hepatocellular carcinoma. However, its structure has not been elucidated. HBx carries nine conserved cysteine residues that have proven to be crucial for its various functions. However, the status of disulfide bonds between the cysteine residues reported in previous studies remains discrepant because of the use of refolded recombinant HBx that may contain non-native disulfides. Now we have determined the disulfide linkages in soluble and biologically active recombinant maltose binding protein-HBx fusion protein using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. We report four disulfide linkages in HBx protein, viz., between Cys(7) and Cys(69), Cys(61) and Cys(115), Cys(78) and Cys(137), and Cys(17) and Cys(143), based on the differential mobility of corresponding disulfide-linked peptide ions under reducing and nonreducing conditions. Cys(148) was observed to be free. Site-directed mutagenesis of Cys(143) and Cys(148) with serine and functional analyses of these mutants affirmed the importance of these residues in the ability of HBx to potentiate Cdk2/cyclin E kinase activity and transcriptionally activate promoter reporter gene activity. Thus, this study identifies native disulfide linkages in the structure of a biologically active viral oncoprotein.


Assuntos
Dissulfetos/química , Vírus da Hepatite B/química , Transativadores/química , Ciclina E/química , Ciclina E/genética , Ciclina E/metabolismo , Quinase 2 Dependente de Ciclina/química , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Cisteína , Dissulfetos/metabolismo , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Humanos , Espectrometria de Massas , Mutagênese Sítio-Dirigida , Transativadores/genética , Transativadores/metabolismo , Proteínas Virais Reguladoras e Acessórias
14.
Proteomics ; 13(21): 3189-204, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24030930

RESUMO

Mammary gland is made up of a branching network of ducts that end in alveoli. Terminally differentiated mammary epithelial cells (MECs) constitute the innermost layer of aveoli. They are milk-secreting cuboidal cells that secrete milk proteins during lactation. Little is known about the expression profile of proteins in the metabolically active MECs during lactation or their functional role in the lactation process. In the present investigation, we have reported the proteome map of MECs in lactating cows using 2DE MALDI-TOF/TOF MS and 1D-Gel-LC-MS/MS. MECs were isolated from milk using immunomagnetic beads and confirmed by RT-PCR and Western blotting. The 1D-Gel-LC-MS/MS and 2DE-MS/MS based approaches led to identification of 431 and 134 proteins, respectively, with a total of 497 unique proteins. Proteins identified in this study were clustered into functional groups using bioinformatics tools. Pathway analysis of the identified proteins revealed 28 pathways (p < 0.05) providing evidence for involvement of various proteins in lactation function. This study further provides experimental evidence for the presence of many proteins that have been predicted in annotated bovine genome. The data generated further provide a set of bovine MEC-specific proteins that will help the researchers to understand the molecular events taking place during lactation.


Assuntos
Células Epiteliais/química , Glândulas Mamárias Animais/citologia , Leite/citologia , Proteoma/análise , Animais , Bovinos , Feminino , Lactação/metabolismo , Glândulas Mamárias Animais/metabolismo , Redes e Vias Metabólicas , Mapas de Interação de Proteínas , Proteínas/análise , Proteínas/química , Proteínas/metabolismo , Proteoma/química
15.
Mol Cell Proteomics ; 12(12): 3677-89, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24019148

RESUMO

Cotton ovule epidermal cell differentiation into long fibers primarily depends on wall-oriented processes such as loosening, elongation, remodeling, and maturation. Such processes are governed by cell wall bound structural proteins and interacting carbohydrate active enzymes. Glycosylation plays a major role in the structural, functional, and localization aspects of the cell wall and extracellular destined proteins. Elucidating the glycoproteome of fiber cells would reflect its wall composition as well as compartmental requirement, which must be system specific. Following complementary proteomic approaches, we have identified 334 unique proteins comprising structural and regulatory families. Glycopeptide-based enrichment followed by deglycosylation with PNGase F and A revealed 92 unique peptides containing 106 formerly N-linked glycosylated sites from 67 unique proteins. Our results showed that structural proteins like arabinogalactans and carbohydrate active enzymes were relatively more abundant and showed stage- and isoform-specific expression patterns in the differentiating fiber cell. Furthermore, our data also revealed the presence of heterogeneous and novel forms of structural and regulatory glycoproteins. Comparative analysis with other plant glycoproteomes highlighted the unique composition of the fiber glycoproteome. The present study provides the first insight into the identity, abundance, diversity, and composition of the glycoproteome within single celled cotton fibers. The elucidated composition also indirectly provides clues about unicellular compartmental requirements underlying single cell differentiation.


Assuntos
Parede Celular/química , Regulação da Expressão Gênica de Plantas , Glicoproteínas/química , Gossypium/química , Células Vegetais/química , Proteínas de Plantas/química , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Diferenciação Celular , Parede Celular/genética , Parede Celular/metabolismo , Fibra de Algodão , Eletroforese em Gel de Poliacrilamida , Regulação da Expressão Gênica no Desenvolvimento , Glicômica , Glicoproteínas/genética , Glicoproteínas/isolamento & purificação , Glicosilação , Gossypium/genética , Gossypium/metabolismo , Anotação de Sequência Molecular , Dados de Sequência Molecular , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/química , Células Vegetais/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Proteômica , Análise de Célula Única , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
16.
Nat Commun ; 4: 1736, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23591903

RESUMO

Clinical malaria is associated with proliferation of blood-stage parasites. During the blood stage, Plasmodium parasites invade host red blood cells, multiply, egress and reinvade uninfected red blood cells to continue the life cycle. Here we demonstrate that calcium-dependent permeabilization of host red blood cells is critical for egress of Plasmodium falciparum merozoites. Although perforin-like proteins have been predicted to mediate membrane perforation during egress, the expression, activity and mechanism of action of these proteins have not been demonstrated. Here, we show that two perforin-like proteins, perforin-like protein 1 and perforin-like protein 2, are expressed in the blood stage. Perforin-like protein 1 localizes to the red blood cell membrane and parasitophorous vacuolar membrane in mature schizonts following its Ca(2+)-dependent discharge from micronemes. Furthermore, perforin-like protein 1 shows Ca(2+)-dependent permeabilization and membranolytic activities suggesting that it may be one of the effector proteins that mediate Ca(2+)-dependent membrane perforation during egress.


Assuntos
Cálcio/metabolismo , Eritrócitos/metabolismo , Perforina/metabolismo , Plasmodium falciparum/fisiologia , Animais , Western Blotting , Eritrócitos/parasitologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
17.
Proc Natl Acad Sci U S A ; 110(14): 5392-7, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23471987

RESUMO

Malaria parasites use hemoglobin (Hb) as a major nutrient source in the intraerythrocytic stage, during which heme is converted to hemozoin (Hz). The formation of Hz is essential for parasite survival, but to date, the underlying mechanisms of Hb degradation and Hz formation are poorly understood. We report the presence of a ∼200-kDa protein complex in the food vacuole that is required for Hb degradation and Hz formation. This complex contains several parasite proteins, including falcipain 2/2', plasmepsin II, plasmepsin IV, histo aspartic protease, and heme detoxification protein. The association of these proteins is evident from coimmunoprecipitation followed by mass spectrometry, coelution from a gel filtration column, cosedimentation on a glycerol gradient, and in vitro protein interaction analyses. To functionally characterize this complex, we developed an in vitro assay using two of the proteins present in the complex. Our results show that falcipain 2 and heme detoxification protein associate with each other to efficiently convert Hb to Hz. We also used this in vitro assay to elucidate the modes of action of chloroquine and artemisinin. Our results reveal that both chloroquine and artemisinin act during the heme polymerization step, and chloroquine also acts at the Hb degradation step. These results may have important implications in the development of previously undefined antimalarials.


Assuntos
Antimaláricos/farmacologia , Cisteína Endopeptidases/metabolismo , Hemeproteínas/biossíntese , Hemoglobinas/metabolismo , Complexos Multiproteicos/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Artemisininas , Cloroquina , Cromatografia em Gel , Imunoprecipitação , Espectrometria de Massas , Polimerização/efeitos dos fármacos , Proteólise/efeitos dos fármacos
18.
BMC Genomics ; 13: 624, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23151214

RESUMO

BACKGROUND: Fuzzless-lintless cotton mutants are considered to be the ideal material to understand the molecular mechanisms involved in fibre cell development. Although there are few reports on transcriptome and proteome analyses in cotton at fibre initiation and elongation stages, there is no comprehensive comparative transcriptome analysis of fibre-bearing and fuzzless-lintless cotton ovules covering fibre initiation to secondary cell wall (SCW) synthesis stages. In the present study, a comparative transcriptome analysis was carried out using G. hirsutum L. cv. MCU5 wild-type (WT) and it's near isogenic fuzzless-lintless (fl) mutant at fibre initiation (0 dpa/days post anthesis), elongation (5, 10 and 15 dpa) and SCW synthesis (20 dpa) stages. RESULTS: Scanning electron microscopy study revealed the delay in the initiation of fibre cells and lack of any further development after 2 dpa in the fl mutant. Transcriptome analysis showed major down regulation of transcripts (90%) at fibre initiation and early elongation (5 dpa) stages in the fl mutant. Majority of the down regulated transcripts at fibre initiation stage in the fl mutant represent calcium and phytohormone mediated signal transduction pathways, biosynthesis of auxin and ethylene and stress responsive transcription factors (TFs). Further, transcripts involved in carbohydrate and lipid metabolisms, mitochondrial electron transport system (mETS) and cell wall loosening and elongation were highly down-regulated at fibre elongation stage (5-15 dpa) in the fl mutant. In addition, cellulose synthases and sucrose synthase C were down-regulated at SCW biosynthesis stage (15-20 dpa). Interestingly, some of the transcripts (~50%) involved in phytohormone signalling and stress responsive transcription factors that were up-regulated at fibre initiation stage in the WT were found to be up-regulated at much later stage (15 dpa) in fl mutant. CONCLUSIONS: Comparative transcriptome analysis of WT and its near isogenic fl mutant revealed key genes and pathways involved at various stages of fibre development. Our data implicated the significant role of mitochondria mediated energy metabolism during fibre elongation process. The delayed expression of genes involved in phytohormone signalling and stress responsive TFs in the fl mutant suggests the need for a coordinated expression of regulatory mechanisms in fibre cell initiation and differentiation.


Assuntos
Fibra de Algodão , Genes de Plantas/genética , Genômica , Gossypium/crescimento & desenvolvimento , Gossypium/genética , Mutação , Transdução de Sinais/genética , Sinalização do Cálcio/genética , Metabolismo dos Carboidratos/genética , Parede Celular/metabolismo , Transporte de Elétrons/genética , Metabolismo Energético/genética , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Gossypium/anatomia & histologia , Gossypium/metabolismo , Homeostase/genética , Mitocôndrias/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Osmose , Reguladores de Crescimento de Plantas/metabolismo , Estabilidade Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética
19.
PLoS One ; 7(10): e46374, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056292

RESUMO

Glycosylation studies of plasma proteins can reveal information about the onset and progression of diseases, where in the glycan biosynthetic pathways are disturbed as in rheumatoid arthritis (RA). The present study was focused on analysis of O-linked glycoproteins of plasma in RA patients. Two dimensional gel electrophoresis of jacalin bound plasma of RA patients revealed a number of differentially expressed protein spots as compared to healthy controls. Eighteen protein spots were found to have statistically significant (p<0.05) difference in their expression level from four sets of gels and were identified by MALDI-TOF MS. Most of the identified proteins were predicted to be O-glycosylated proteins by Net-O-Gly 3.1 algorithm. Among these the alpha 2HS glycoprotein (A2HSG) was found to be down regulated whereas inter alpha trypsin inhibitor H4 (ITIH4) was up regulated and this was validated by Western blotting. The glycosylation studies showed the reduced N-linked sialylation of A2HSG in RA patients. Altered glycoprotein expression and functional as well as structural studies of glycans might help in the diagnosis of RA and understanding the disease pathogenesis.


Assuntos
Artrite Reumatoide/sangue , Proteínas Sanguíneas/metabolismo , Glicoproteínas/sangue , Ácido N-Acetilneuramínico/metabolismo , Lectinas de Plantas/metabolismo , Proteoma , alfa-2-Glicoproteína-HS/metabolismo , Western Blotting , Eletroforese em Gel Bidimensional , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
20.
Plant Mol Biol ; 78(3): 223-46, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22143977

RESUMO

Cotton is an important source of natural fibre used in the textile industry and the productivity of the crop is adversely affected by drought stress. High throughput transcriptomic analyses were used to identify genes involved in fibre development. However, not much information is available on cotton genome response in developing fibres under drought stress. In the present study a genome wide transcriptome analysis was carried out to identify differentially expressed genes at various stages of fibre growth under drought stress. Our study identified a number of genes differentially expressed during fibre elongation as compared to other stages. High level up-regulation of genes encoding for enzymes involved in pectin modification and cytoskeleton proteins was observed at fibre initiation stage. While a large number of genes encoding transcription factors (AP2-EREBP, WRKY, NAC and C2H2), osmoprotectants, ion transporters and heat shock proteins and pathways involved in hormone (ABA, ethylene and JA) biosynthesis and signal transduction were up-regulated and genes involved in phenylpropanoid and flavonoid biosynthesis, pentose and glucuronate interconversions and starch and sucrose metabolism pathways were down-regulated during fibre elongation. This study showed that drought has relatively less impact on fibre initiation but has profound effect on fibre elongation by down-regulating important genes involved in cell wall loosening and expansion process. The comprehensive transcriptome analysis under drought stress has provided valuable information on differentially expressed genes and pathways during fibre development that will be useful in developing drought tolerant cotton cultivars without compromising fibre quality.


Assuntos
Gossypium/crescimento & desenvolvimento , Gossypium/genética , Aclimatação/genética , Aclimatação/fisiologia , Divisão Celular , Parede Celular/genética , Parede Celular/metabolismo , Fibra de Algodão , Regulação para Baixo , Secas , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Gossypium/metabolismo , Redes e Vias Metabólicas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Estresse Fisiológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...