Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Cancer ; 130(9): 1463-1476, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38438589

RESUMO

BACKGROUND: Uterine serous cancer (USC) comprises around 10% of all uterine cancers. However, USC accounts for approximately 40% of uterine cancer deaths, which is attributed to tumor aggressiveness and limited effective treatment. Galectin 3 (Gal3) has been implicated in promoting aggressive features in some malignancies. However, Gal3's role in promoting USC pathology is lacking. METHODS: We explored the relationship between LGALS3 levels and prognosis in USC patients using TCGA database, and examined the association between Gal3 levels in primary USC tumors and clinical-pathological features. CRISPR/Cas9-mediated Gal3-knockout (KO) and GB1107, inhibitor of Gal3, were employed to evaluate Gal3's impact on cell function. RESULTS: TCGA analysis revealed a worse prognosis for USC patients with high LGALS3. Patients with no-to-low Gal3 expression in primary tumors exhibited reduced clinical-pathological tumor progression. Gal3-KO and GB1107 reduced cell proliferation, stemness, adhesion, migration, and or invasion properties of USC lines. Furthermore, Gal3-positive conditioned media (CM) stimulated vascular tubal formation and branching and transition of fibroblast to cancer-associated fibroblast compared to Gal3-negative CM. Xenograft models emphasized the significance of Gal3 loss with fewer and smaller tumors compared to controls. Moreover, GB1107 impeded the growth of USC patient-derived organoids. CONCLUSION: These findings suggest inhibiting Gal3 may benefit USC patients.


Assuntos
Proteínas Sanguíneas , Cistadenocarcinoma Seroso , Galectina 3 , Neoplasias Uterinas , Humanos , Feminino , Neoplasias Uterinas/patologia , Neoplasias Uterinas/genética , Neoplasias Uterinas/metabolismo , Galectina 3/genética , Galectina 3/metabolismo , Cistadenocarcinoma Seroso/patologia , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Prognóstico , Animais , Camundongos , Galectinas/genética , Galectinas/metabolismo , Movimento Celular
2.
Cell ; 186(11): 2361-2379.e25, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37192619

RESUMO

Multiple anticancer drugs have been proposed to cause cell death, in part, by increasing the steady-state levels of cellular reactive oxygen species (ROS). However, for most of these drugs, exactly how the resultant ROS function and are sensed is poorly understood. It remains unclear which proteins the ROS modify and their roles in drug sensitivity/resistance. To answer these questions, we examined 11 anticancer drugs with an integrated proteogenomic approach identifying not only many unique targets but also shared ones-including ribosomal components, suggesting common mechanisms by which drugs regulate translation. We focus on CHK1 that we find is a nuclear H2O2 sensor that launches a cellular program to dampen ROS. CHK1 phosphorylates the mitochondrial DNA-binding protein SSBP1 to prevent its mitochondrial localization, which in turn decreases nuclear H2O2. Our results reveal a druggable nucleus-to-mitochondria ROS-sensing pathway-required to resolve nuclear H2O2 accumulation and mediate resistance to platinum-based agents in ovarian cancers.


Assuntos
Antineoplásicos , Espécies Reativas de Oxigênio , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Núcleo Celular/metabolismo , Humanos
3.
bioRxiv ; 2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36945474

RESUMO

Multiple chemotherapies are proposed to cause cell death in part by increasing the steady-state levels of cellular reactive oxygen species (ROS). However, for most of these drugs exactly how the resultant ROS function and are sensed is poorly understood. In particular, it's unclear which proteins the ROS modify and their roles in chemotherapy sensitivity/resistance. To answer these questions, we examined 11 chemotherapies with an integrated proteogenomic approach identifying many unique targets for these drugs but also shared ones including ribosomal components, suggesting one mechanism by which chemotherapies regulate translation. We focus on CHK1 which we find is a nuclear H 2 O 2 sensor that promotes an anti-ROS cellular program. CHK1 acts by phosphorylating the mitochondrial-DNA binding protein SSBP1, preventing its mitochondrial localization, which in turn decreases nuclear H 2 O 2 . Our results reveal a druggable nucleus-to-mitochondria ROS sensing pathway required to resolve nuclear H 2 O 2 accumulation, which mediates resistance to platinum-based chemotherapies in ovarian cancers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...