Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5414, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443431

RESUMO

This paper presents the composite drought indicator (CDI) that Jordanian, Lebanese, Moroccan, and Tunisian government agencies now produce monthly to support operational drought management decision making, and it describes their iterative co-development processes. The CDI is primarily intended to monitor agricultural and ecological drought on a seasonal time scale. It uses remote sensing and modelled data inputs, and it reflects anomalies in precipitation, vegetation, soil moisture, and evapotranspiration. Following quantitative and qualitative validation assessments, engagements with policymakers, and consideration of agencies' technical and institutional capabilities and constraints, we made changes to CDI input data, modelling procedures, and integration to tailor the system for each national context. We summarize validation results, drought modelling challenges and how we overcame them through CDI improvements, and we describe the monthly CDI production process and outputs. Finally, we synthesize procedural and technical aspects of CDI development and reflect on the constraints we faced as well as trade-offs made to optimize the CDI for operational monitoring to support policy decision-making-including aspects of salience, credibility, and legitimacy-within each national context.

2.
Nat Ecol Evol ; 8(2): 229-238, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38168941

RESUMO

A steady rise in fires in the Western United States, coincident with intensifying droughts, imparts substantial modifications to the underlying vegetation, hydrology and overall ecosystem. Drought can compound the ecosystem disturbance caused by fire, although how these compound effects on hydrologic and ecosystem recovery vary among ecosystems is poorly understood. Here we use remote sensing-derived high-resolution evapotranspiration (ET) estimates from before and after 1,514 fires to show that ecoregions dominated by grasslands and shrublands are more susceptible to drought, which amplifies fire-induced ET decline and, subsequently, shifts water flux partitioning. In contrast, severely burned forests recover from fire slowly or incompletely, but are less sensitive to dry extremes. We conclude that moisture limitation caused by droughts influences the dynamics of water balance recovery in post-fire years. This finding explains why moderate to extreme droughts aggravate impacts on the water balance in non-forested vegetation, while moisture accessed by deeper roots in forests helps meet evaporative demands unless severe burns disrupt internal tree structure and deplete fuel load availability. Our results highlight the dominant control of drought on altering the resilience of vegetation to fires, with critical implications for terrestrial ecosystem stability in the face of anthropogenic climate change in the West.


Assuntos
Ecossistema , Incêndios , Estados Unidos , Secas , Florestas , Água
3.
Sci Rep ; 13(1): 3411, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36854885

RESUMO

Hydrologic extremes often involve a complex interplay of several processes. For example, flood events can have a cascade of impacts, such as saturated soils and suppressed vegetation growth. Accurate representation of such interconnected processes while accounting for associated triggering factors and subsequent impacts of flood events is difficult to achieve with conceptual hydrological models alone. In this study, we use the 2019 flood in the Northern Mississippi and Missouri Basins, which caused a series of hydrologic disturbances, as an example of such a flood event. This event began with above-average precipitation combined with anomalously high snowmelt in spring 2019. This series of anomalies resulted in above normal soil moisture that prevented crops from being planted over much of the corn belt region. In the present study, we demonstrate that incorporating remote sensing information within a hydrologic modeling system adds substantial value in representing the processes that lead to the 2019 flood event and the resulting agricultural disturbances. This remote sensing data infusion improves the accuracy of soil moisture and snowmelt estimates by up to 16% and 24%, respectively, and it also improves the representation of vegetation anomalies relative to the reference crop fraction anomalies.

4.
J Adv Model Earth Syst ; 14(11): e2022MS003040, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36582299

RESUMO

Representation of irrigation in Earth System Models has advanced over the past decade, yet large uncertainties persist in the effective simulation of irrigation practices, particularly over locations where the on-ground practices and climate impacts are less reliably known. Here we investigate the utility of assimilating remotely sensed vegetation data for improving irrigation water use and associated fluxes within a land surface model. We show that assimilating optical sensor-based leaf area index estimates significantly improves the simulation of irrigation water use when compared to the USGS ground reports. For heavily irrigated areas, assimilation improves the evaporative fluxes and gross primary production (GPP) simulations, with the median correlation increasing by 0.1-1.1 and 0.3-0.6, respectively, as compared to the reference datasets. Further, bias improvements in the range of 14-35 mm mo-1 and 10-82 g m-2 mo-1 are obtained in evaporative fluxes and GPP as a result of incorporating vegetation constraints, respectively. These results demonstrate that the use of remotely sensed vegetation data is an effective, observation-informed, globally applicable approach for simulating irrigation and characterizing its impacts on water and carbon states.

6.
Sci Rep ; 12(1): 16163, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36171251

RESUMO

Human and climate induced land surface changes resulting from irrigation, snow cover decreases, and greening impact the surface albedo over High Mountain Asia (HMA). Here we use a partial information decomposition approach and remote sensing data to quantify the effects of the changes in leaf area index, soil moisture, and snow cover on the surface albedo in HMA, home to over a billion people, from 2003 to 2020. The study establishes strong evidence of anthropogenic agricultural water use over irrigated lands (e.g., Ganges-Brahmaputra) which causes the highest surface albedo decreases (≤ 1%/year). Greening and decreased snow cover from warming also drive changes in visible and near-infrared surface albedo in different areas of HMA. The significant role of irrigation and greening in influencing albedo suggests the potential of a positive feedback cycle where albedo decreases lead to increased evaporative demand and increased stress on water resources.


Assuntos
Mudança Climática , Neve , Ásia , Humanos , Solo , Água
7.
Sci Rep ; 12(1): 964, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35046481

RESUMO

The Pantanal, the largest contiguous wetland in the world with a high diversity of ecosystems and habitat for several endangered species, was impacted by record-breaking wildfires in 2020. In this study, we integrate satellite and modeling data that enable exploration of natural and human contributing factors to the unprecedented 2020 fires. We demonstrate that the fires were fueled by an exceptional multi-year drought, but dry conditions solely could not explain the spatial patterns of burning. Our analysis reveals how human-caused fires exacerbated drought effects on natural ecosystem within the Pantanal, with large burned fractions primarily over natural (52%), and low cattle density areas (44%) in 2020. The post-fire ecosystem and hydrology changes also had strong ecological effects, with vegetation productivity less than - 1.5 σ over more than 30% of the natural and conservation areas. In contrast to more managed areas, there was a clear decrease in evaporation (by ~ 9%) and an increase in runoff (by ~ 5%) over the natural areas, with long-term impacts on ecosystem recovery and fire risk. This study provides the first tropical evidence outside rainforests of the synergy between climate, land management and fires, and the associated impacts on the ecosystem and hydrology over the largest contiguous wetlands in the world.

8.
J Hydrometeorol ; 21(1): 59-71, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32905519

RESUMO

We evaluate the impact of Gravity Recovery and Climate Experiment data assimilation (GRACE-DA) on seasonal hydrological forecast initialization over the U.S., focusing on groundwater storage. GRACE-based terrestrial water storage (TWS) estimates are assimilated into a land surface model for the 2003-2016 period. Three-month hindcast (i.e., forecast of past events) simulations are initialized using states from the reference (no data assimilation) and GRACE-DA runs. Differences between the two initial hydrological condition (IHC) sets are evaluated for two forecast techniques at 305 wells where depth-to-water-table measurements are available. Results show that using GRACE-DA-based IHC improves seasonal groundwater forecast performance in terms of both RMSE and correlation. While most regions show improvement, degradation is common in the High Plains, where withdrawals for irrigation practices affect groundwater variability more strongly than the weather variability, which demonstrates the need for simulating such activities. These findings contribute to recent efforts towards an improved U.S. drought monitor and forecast system.

9.
Remote Sens (Basel) ; 12(13): 2148, 2020 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-33425378

RESUMO

Traditional watershed modeling often overlooks the role of vegetation dynamics. There is also little quantitative evidence to suggest that increased physical realism of vegetation dynamics in process-based models improves hydrology and water quality predictions simultaneously. In this study, we applied a modified Soil and Water Assessment Tool (SWAT) to quantify the extent of improvements that the assimilation of remotely sensed Leaf Area Index (LAI) would convey to streamflow, soil moisture, and nitrate load simulations across a 16,860 km2 agricultural watershed in the midwestern United States. We modified the SWAT source code to automatically override the model's built-in semiempirical LAI with spatially distributed and temporally continuous estimates from Moderate Resolution Imaging Spectroradiometer (MODIS). Compared to a "basic" traditional model with limited spatial information, our LAI assimilation model (i) significantly improved daily streamflow simulations during medium-to-low flow conditions, (ii) provided realistic spatial distributions of growing season soil moisture, and (iii) substantially reproduced the long-term observed variability of daily nitrate loads. Further analysis revealed that the overestimation or underestimation of LAI imparted a proportional cascading effect on how the model partitions hydrologic fluxes and nutrient pools. As such, assimilation of MODIS LAI data corrected the model's LAI overestimation tendency, which led to a proportionally increased rootzone soil moisture and decreased plant nitrogen uptake. With these new findings, our study fills the existing knowledge gap regarding vegetation dynamics in watershed modeling and confirms that assimilation of MODIS LAI data in watershed models can effectively improve both hydrology and water quality predictions.

10.
Artigo em Inglês | MEDLINE | ID: mdl-31807496

RESUMO

Changes in terrestrial water storage (TWS) in High Mountain Asia (HMA) could have major societal impacts, as the region's large reservoirs of glaciers, snow, and groundwater provide a freshwater source to more than one billion people. We seek to quantify and close the budget of secular changes in TWS over the span of the GRACE satellite mission (2003-2016). To assess the TWS trend budget we consider a new high-resolution mass trend product determined directly from GRACE L1B data, glacier mass balance derived from Digital Elevation Models (DEMs), groundwater variability determined from confined and unconfined well observations, and terrestrial water budget estimates from a suite of land surface model simulations with the NASA Land Information System (LIS). This effort is successful at closing the aggregated TWS trend budget over the entire HMA region, the glaciated portion of HMA, and the Indus and Ganges basins, where the full-region trends are primarily due to the glacier mass balance and groundwater signals. Additionally, we investigate the closure of TWS trends at individual 1-arc-degree mascons (area ≈12,000 km2); a significant improvement in spatial resolution over previous analyses of GRACE-derived trends. This mascon-level analysis reveals locations where the TWS trends are well-explained by the independent datasets, as well as regions where they are not; identifying specific geographic areas where additional data and model improvements are needed. The accurate characterization of total TWS trends and its components presented here is critical to understanding the complex dynamics of the region, and is a necessary step toward projecting future water mass changes in HMA.

11.
Artigo em Inglês | MEDLINE | ID: mdl-33869235

RESUMO

Toward qualifying hydrologic changes in the High Mountain Asia (HMA) region, this study explores the use of a hyper-resolution (1 km) land data assimilation (DA) framework developed within the NASA Land Information System using the Noah Multi-parameterization Land Surface Model (Noah-MP) forced by the meteorological boundary conditions from Modern-Era Retrospective analysis for Research and Applications, Version 2 data. Two different sets of DA experiments are conducted: (1) the assimilation of a satellite-derived snow cover map (MOD10A1) and (2) the assimilation of the NASA MEaSUREs landscape freeze/thaw product from 2007 to 2008. The performance of the snow cover assimilation is evaluated via comparisons with available remote sensing-based snow water equivalent product and ground-based snow depth measurements. For example, in the comparison against ground-based snow depth measurements, the majority of the stations (13 of 14) show slightly improved goodness-of-fit statistics as a result of the snow DA, but only four are statistically significant. In addition, comparisons to the satellite-based land surface temperature products (MOD11A1 and MYD11A1) show that freeze/thaw DA yields improvements (at certain grid cells) of up to 0.58 K in the root-mean-square error (RMSE) and 0.77 K in the absolute bias (relative to model-only simulations). In the comparison against three ground-based soil temperature measurements along the Himalayas, the bias and the RMSE in the 0-10 cm soil temperature are reduced (on average) by 10 and 7%, respectively. The improvements in the top layer of soil estimates also propagate through the deeper soil layers, where the bias and the RMSE in the 10-40 cm soil temperature are reduced (on average) by 9 and 6%, respectively. However, no statistically significant skill differences are observed for the freeze/thaw DA system in the comparisons against ground-based surface temperature measurements at mid-to-low altitude. Therefore, the two proposed DA schemes show the potential of improving the predictability of snow mass, surface temperature, and soil temperature states across HMA, but more ground-based measurements are still required, especially at high-altitudes, in order to document a more statistically significant improvement as a result of the two DA schemes.

12.
J Hydrometeorol ; 20(8): 1595-1617, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32908457

RESUMO

Terrestrial hydrologic trends over the conterminous United States are estimated for 1980-2015 using the National Climate Assessment Land Data Assimilation System (NCA-LDAS) reanalysis. NCA-LDAS employs the uncoupled Noah version 3.3 land surface model at 0.125°× 1258° forced with NLDAS-2 meteorology, rescaled Climate Prediction Center precipitation, and assimilated satellite-based soil moisture, snow depth, and irrigation products. Mean annual trends are reported using the nonparametric Mann-Kendall test at p < 0.1 significance. Results illustrate the interrelationship between regional gradients in forcing trends and trends in other land energy and water stores and fluxes. Mean precipitation trends range from +3 to +9 mm yr-1 in the upper Great Plains and Northeast to -1 to -9 mm yr-1 in the West and South, net radiation flux trends range from 10.05 to 10.20 W m-2 yr-1 in the East to -0.05 to -0.20 W m-2 yr-1 in the West, and U.S.-wide temperature trends average about +0.03 K yr-1. Trends in soil moisture, snow cover, latent and sensible heat fluxes, and runoff are consistent with forcings, contributing to increasing evaporative fraction trends from west to east. Evaluation of NCA-LDAS trends compared to independent data indicates mixed results. The RMSE of U.S.-wide trends in number of snow cover days improved from 3.13 to 2.89 days yr-1 while trend detection increased 11%. Trends in latent heat flux were hardly affected, with RMSE decreasing only from 0.17 to 0.16 W m-2 yr-1, while trend detection increased 2%. NCA-LDAS runoff trends degraded significantly from 2.6 to 16.1 mm yr-1 while trend detection was unaffected. Analysis also indicated that NCA-LDAS exhibits relatively more skill in low precipitation station density areas, suggesting there are limits to the effectiveness of satellite data assimilation in densely gauged regions. Overall, NCA-LDAS demonstrates capability for quantifying physically consistent, U.S. hydrologic climate trends over the satellite era.

13.
Artigo em Inglês | MEDLINE | ID: mdl-33479598

RESUMO

This study explores the uncertainties in terrestrial water budget estimation over High Mountain Asia (HMA) using a suite of uncoupled land surface model (LSM) simulations. The uncertainty in the water balance components of precipitation (P), evapotranspiration (ET), runoff(R), and terrestrial water storage (TWS) is significantly impacted by the uncertainty in the driving meteorology, with precipitation being the most important boundary condition. Ten gridded precipitation datasets along with a mix of model-, satellite-, and gauge-based products, are evaluated first to assess their suitability for LSM simulations over HMA. The datasets are evaluated by quantifying the systematic and random errors of these products as well as the temporal consistency of their trends. Though the broader spatial patterns of precipitation are generally well captured by the datasets, they differ significantly in their means and trends. In general, precipitation datasets that incorporate information from gauges are found to have higher accuracy with low Root Mean Square Errors and high correlation coefficient values. An ensemble of LSM simulations with selected subset of precipitation products is then used to produce the mean annual fluxes and their uncertainty over HMA in P, ET, and R to be 2.11±0.45, 1.26±0.11, and 0.85±0.36 mm per day, respectively. The mean annual estimates of the surface mass (water) balance components from this model ensemble are comparable to global estimates from prior studies. However, the uncertainty/spread of P, ET, and R is significantly larger than the corresponding estimates from global studies. A comparison of ET, snow cover fraction, and changes in TWS estimates against remote sensing-based references confirms the significant role of the input meteorology in influencing the water budget characterization over HMA and points to the need for improving meteorological inputs.

14.
Remote Sens Environ ; 204: 392-400, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32636571

RESUMO

Microwave radiometry has a long legacy of providing estimates of remotely sensed near surface soil moisture measurements over continental and global scales. A consistent assessment of the errors and uncertainties associated with these retrievals is important for their effective utilization in modeling, data assimilation and end-use application environments. This article presents an evaluation of soil moisture retrieval products from AMSR-E, ASCAT, SMOS, AMSR2 and SMAP instruments using information theory-based metrics. These metrics rely on time series analysis of soil moisture retrievals for estimating the measurement error, level of randomness (entropy) and regularity (complexity) of the data. The results of the study indicate that the measurement errors in the remote sensing retrievals are significantly larger than that of the ground soil moisture measurements. The SMAP retrievals, on the other hand, were found to have reduced errors (comparable to those of in-situ datasets), particularly over areas with moderate vegetation. The SMAP retrievals also demonstrate high information content relative to other retrieval products, with higher levels of complexity and reduced entropy. Finally, a joint evaluation of the entropy and complexity of remotely sensed soil moisture products indicates that the information content of the AMSR-E, ASCAT, SMOS and AMSR2 retrievals is low, whereas SMAP retrievals show better performance. The use of information theoretic assessments is effective in quantifying the required levels of improvements needed in the remote sensing soil moisture retrievals to enhance their utility and information content.

15.
J Geophys Res Atmos ; 123(18): 10732-10756, 2018 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-32742896

RESUMO

This study evaluates the impact of assimilating soil moisture data from NASA's Soil Moisture Active Passive (SMAP) on short-term regional weather and air quality modeling in East Asia during the Korea-US Air Quality Study (KORUS-AQ) airborne campaign. SMAP data are assimilated into the Noah land surface model using an ensemble Kalman filter approach in the Land Information System framework, which is semi-coupled with the NASA-Unified Weather Research and Forecasting model with online chemistry (NUWRF-Chem). With SMAP assimilation included, water vapor and carbon monoxide (CO) transport from northern-central China transitional climate zones to South Korea is better represented in NUWRF-Chem during two studied pollution events. Influenced by different synoptic conditions and emission patterns, impact of SMAP assimilation on modeled CO in South Korea is intense (>30 ppbv) during one event and less significant (<8 ppbv) during the other. SMAP assimilation impact on air quality modeling skill is complicated by other error sources such as the chemical initial and boundary conditions (IC/LBC) and emission inputs of NUWRF-Chem. Using a satellite-observation-constrained chemical IC/LBC instead of a free-running, coarser-resolution chemical IC/LBC reduces modeled CO by up to 80 ppbv over South Korea. Consequently, CO performance is improved in the middle-upper troposphere whereas degraded in the lower troposphere. Remaining negative CO biases result largely from the emissions inputs. The advancements in land surface modeling and chemical IC/LBC presented here are expected to benefit future investigations on constraining emissions using observations, which can in turn enable more accurate assessments of SMAP assimilation and chemical IC/LBC impacts.

16.
Sci Data ; 4: 170012, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28195575

RESUMO

Seasonal agricultural drought monitoring systems, which rely on satellite remote sensing and land surface models (LSMs), are important for disaster risk reduction and famine early warning. These systems require the best available weather inputs, as well as a long-term historical record to contextualize current observations. This article introduces the Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS), a custom instance of the NASA Land Information System (LIS) framework. The FLDAS is routinely used to produce multi-model and multi-forcing estimates of hydro-climate states and fluxes over semi-arid, food insecure regions of Africa. These modeled data and derived products, like soil moisture percentiles and water availability, were designed and are currently used to complement FEWS NET's operational remotely sensed rainfall, evapotranspiration, and vegetation observations. The 30+ years of monthly outputs from the FLDAS simulations are publicly available from the NASA Goddard Earth Science Data and Information Services Center (GES DISC) and recommended for use in hydroclimate studies, early warning applications, and by agro-meteorological scientists in Eastern, Southern, and Western Africa.

17.
J Hydrol (Amst) ; 555: 535-546, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32647388

RESUMO

Improved understanding of the water balance in the Blue Nile is of critical importance because of increasingly frequent hydroclimatic extremes under a changing climate. The intercomparison and evaluation of multiple land surface models (LSMs) associated with different meteorological forcing and precipitation datasets can offer a moderate range of water budget variable estimates. In this context, two LSMs, Noah version 3.3 (Noah3.3) and Catchment LSM version Fortuna 2.5 (CLSMF2.5) coupled with the Hydrological Modeling and Analysis Platform (HyMAP) river routing scheme are used to produce hydrological estimates over the region. The two LSMs were forced with different combinations of two reanalysis-based meteorological datasets from the Modern-Era Retrospective analysis for Research and Applications datasets (i.e., MERRA-Land and MERRA-2) and three observation-based precipitation datasets, generating a total of 16 experiments. Modeled evapotranspiration (ET), streamflow, and terrestrial water storage estimates were evaluated against the Atmosphere-Land Exchange Inverse (ALEXI) ET, in-situ streamflow observations, and NASA Gravity Recovery and Climate Experiment (GRACE) products, respectively. Results show that CLSMF2.5 provided better representation of the water budget variables than Noah3.3 in terms of Nash-Sutcliffe coefficient when considering all meteorological forcing datasets and precipitation datasets. The model experiments forced with observation-based products, the Climate Hazards group Infrared Precipitation with Stations (CHIRPS) and the Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA), outperform those run with MERRA-Land and MERRA-2 precipitation. The results presented in this paper would suggest that the Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System incorporate CLSMF2.5 and HyMAP routing scheme to better represent the water balance in this region.

18.
IEEE Trans Geosci Remote Sens ; 54(2): 1103-1117, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29795962

RESUMO

Better estimation of land surface microwave emissivity promises to improve over-land precipitation retrievals in the GPM era. Forward models of land microwave emissivity are available but have suffered from poor parameter specification and limited testing. Here, forward models are calibrated and the accompanying change in predictive power is evaluated. With inputs (e.g., soil moisture) from the Noah land surface model and applying MODIS LAI data, two microwave emissivity models are tested, the Community Radiative Transfer Model (CRTM) and Community Microwave Emission Model (CMEM). The calibration is conducted with the NASA Land Information System (LIS) parameter estimation subsystem using AMSR-E based emissivity retrievals for the calibration dataset. The extent of agreement between the modeled and retrieved estimates is evaluated using the AMSR-E retrievals for a separate 7-year validation period. Results indicate that calibration can significantly improve the agreement, simulating emissivity with an across-channel average root-mean-square-difference (RMSD) of about 0.013, or about 20% lower than if relying on daily estimates based on climatology. The results also indicate that calibration of the microwave emissivity model alone, as was done in prior studies, results in as much as 12% higher across-channel average RMSD, as compared to joint calibration of the land surface and microwave emissivity models. It remains as future work to assess the extent to which the improvements in emissivity estimation translate into improvements in precipitation retrieval accuracy.

19.
J Hydrometeorol ; 17(No 3): 745-759, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29697706

RESUMO

Model benchmarking allows us to separate uncertainty in model predictions caused by model inputs from uncertainty due to model structural error. We extend this method with a "large-sample" approach (using data from multiple field sites) to measure prediction uncertainty caused by errors in (i) forcing data, (ii) model parameters, and (iii) model structure, and use it to compare the efficiency of soil moisture state and evapotranspiration flux predictions made by the four land surface models in the North American Land Data Assimilation System Phase 2 (NLDAS-2). Parameters dominated uncertainty in soil moisture estimates and forcing data dominated uncertainty in evapotranspiration estimates; however, the models themselves used only a fraction of the information available to them. This means that there is significant potential to improve all three components of the NLDAS-2 system. In particular, continued work toward refining the parameter maps and look-up tables, the forcing data measurement and processing, and also the land surface models themselves, has potential to result in improved estimates of surface mass and energy balances.

20.
J Contemp Dent Pract ; 16(12): 963-70, 2015 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27018031

RESUMO

BACKGROUND AND OBJECTIVES: The purpose of this in vitro study was to evaluate the bond strength of the laser-etched base bracket, site of bond failure, and evaluate for enamel remnants on the bracket base after debonding, when compared to foil mesh base bracket. MATERIALS AND METHODS: Sixty noncarious, human premolar extracted for the orthodontic treatment were used for this study. The teeth were randomly divided into two groups containing 30 teeth each, which were bonded with laser-etched base bracket and mesh base bracket using light cure resin. The tensile and mechanical bond strength was tested after 24 hours using TIRA. The forces recorded during debonding were measured in Newton and final readings were tabulated in megapascals (MPa). After debonding, the amount of residual adhesive and enamel detachment on the bracket base were assessed according to adhesive remnant index (ARI) and enamel detachment index (EDI) using stereomicroscope and energy dispersive X-ray spectrometer. RESULTS: The laser-etched base bracket showed statistically significant higher results than mesh base bracket. Mann-Whitney test indicated that laser-etched base bracket had significantly higher tensile bond strength of 8.47 MPa (SD ± 0.84), fatigue strength of 7.75 MPa (SD ± 0.79) compared to mesh base bracket with tensile bond strength of 5.53 Mpa (SD ± 0.89) and fatigue strength of 5.17 MPa (SD ± 1.15). Adhesive remnant index score indicated that laser-etched base bracket had ARI score of 3 for most of the bracket, when compared to mesh base bracket. This was statistically significant. Enamel detachment index scores indicated that less than 10% of enamel detachment occurred in both the types of brackets, which was not statistically significant. CONCLUSION: Laser-etched base bracket showed superior bond strength, when compared to the foil mesh base bracket. The site of bond failure of these laser-etched base bracket was at the interface of enamel-adhesive and did not induce any significant enamel detachment. Thus, we can conclude that laser-etched base bracket is a promising step toward achieving an ideal bracket base design for successful bonding.


Assuntos
Descolagem Dentária , Análise do Estresse Dentário , Cura Luminosa de Adesivos Dentários , Braquetes Ortodônticos , Resinas Compostas , Colagem Dentária , Esmalte Dentário , Humanos , Teste de Materiais , Cimentos de Resina , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...