Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Assunto principal
Intervalo de ano de publicação
1.
J Chem Phys ; 160(13)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38563303

RESUMO

Thermal activation of a particle from a deep potential trap follows the Arrhenius law. Recently, this result has been generalized for interacting diffusive particles in the trap, revealing two universality classes-the Arrhenius class and the excluded volume class. The result was demonstrated with the aid of numerical analysis. Here, we present a perturbative hydrodynamic approach to analytically validate the existence and range of validity for the two universality classes.

2.
Phys Rev E ; 109(3): L032101, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38632768

RESUMO

Finding the mean time it takes for a particle to escape from a metastable state due to thermal fluctuations is a fundamental problem in physics, chemistry, and biology. Here, we consider the escape rate of interacting diffusive particles, from a deep potential trap within the framework of the macroscopic fluctuation theory-a nonequilibrium hydrodynamic theory. For systems without excluded volume, our investigation reveals adherence to the well-established Arrhenius law. However, in the presence of excluded volume, a universality class emerges, fundamentally altering the escape rate. Remarkably, the modified escape rate within this universality class is independent of the interactions at play. The universality class, demonstrating the importance of excluded volume effects, may bring insights to the interpretation of escape processes in the realm of chemical physics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA