Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(28): e202305182, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37193649

RESUMO

Multiresonant thermally activated delayed fluorescence (MR-TADF) compounds are attractive as emitters for organic light-emitting diodes (OLEDs) as they can simultaneously harvest both singlet and triplet excitons to produce light in the device and show very narrow emission spectra, which translates to excellent color purity. Here, we report the first example of an MR-TADF emitter (DOBDiKTa) that fuses together fragments from the two major classes of MR-TADF compounds, those containing boron (DOBNA) and those containing carbonyl groups (DiKTa) as acceptor fragments in the MR-TADF skeleton. The resulting molecular design, this compound shows desirable narrowband pure blue emission and efficient TADF character. The co-host OLED with DOBDiKTa as the emitter showed a maximum external quantum efficiency (EQEmax ) of 17.4 %, an efficiency roll-off of 32 % at 100 cd m-2 , and Commission Internationale de l'Éclairage (CIE) coordinates of (0.14, 0.12). Compared to DOBNA and DiKTa, DOBDiKTa shows higher device efficiency with reduced efficiency roll-off while maintaining a high color purity, which demonstrates the promise of the proposed molecular design.

2.
Beilstein J Org Chem ; 18: 1311-1321, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225727

RESUMO

We designed and synthesized two new ionic thermally activated delayed fluorescent (TADF) emitters that are charged analogues of a known multiresonant TADF (MR-TADF) compound, DiKTa. The emission of the charged derivatives is red-shifted compared to the parent compound. For instance, DiKTa-OBuIm emits in the green (λPL = 499 nm, 1 wt % in mCP) while DiKTa-DPA-OBuIm emits in the red (λPL = 577 nm, 1 wt % in mCP). In 1 wt % mCP films, both emitters showed good photoluminescence quantum yields of 71% and 61%, and delayed lifetimes of 316.6 µs and 241.7 µs, respectively, for DiKTa-OBuIm and DiKTa-DPA-OBuIm, leading to reverse intersystem crossing rates of 2.85 × 103 s-1 and 3.04 × 103 s-1. Light-emitting electrochemical cells were prepared using both DiKTa-OBuIm and DiKTa-DPA-OBuIm as active emitters showing green (λmax = 534 nm) and red (λmax = 656 nm) emission, respectively.

3.
Angew Chem Int Ed Engl ; 61(52): e202213697, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36300809

RESUMO

Herein, we demonstrate how judicious selection of the donor decorating a central multi-resonant thermally activated delayed fluorescence (MR-TADF) core based on DiKTa can lead to very high-performance OLEDs. By decorating the DiKTa core with triphenylamine (TPA) and diphenylamine (DPA), 3TPA-DiKTa and 3DPA-DiKTa exhibit bright, narrowband green and red emission in doped films, respectively. The OLEDs based on these emitters showed record-high performance for this family of emitters with maximum external quantum efficiencies (EQEmax ) of 30.8 % for 3TPA-DiKTa at λEL of 551 nm and 16.7 % for 3DPA-DiKTa at λEL =613 nm. The efficiency roll-off in the OLEDs was improved significantly by using 4CzIPN as an assistant dopant in hyperfluorescence (HF) devices. The outstanding device performance has been attributed to preferential horizontal orientation of the transition dipole moments of 3TPA-DiKTa and 3DPA-DiKTa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA