Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 440: 138270, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38150908

RESUMO

Limited application in protecting lung health is attributed to the low levels of active compounds in lily plant bulbs. This study focused on enhancing the active compounds by fermenting Lilium davidii (Lanzhou Lily) bulbs with Limosilactobacillus fermentum GR-3, isolated from Jiangshui. Lily fermented bulbs with strain GR-3 (LFB+GR-3) increased the bioavailability of hexadecanoic acid methyl ester, 22-tetrahydroxy-5alpha-cholestan-6-one-3-O-beta-d-allopyranoside, 22-O-(6-deoxy-Alpha-l-mannopyranosyl)-3-O-beta-d-glucopyranosyl-pregn-5-en-20-one, 1-O-trans-feruloylglycerol, and 3,4 dihydroxybenzoic acid. LFB+GR-3 fraction was employed to treat the mice model exposed to the carbon black nanoparticles (CBNPs). Immunohistochemical analysis revealed that the deposition of CBNPs and damages in lung tissues were limited in the LFB+GR-3 treatment group, while TNF-α, IL-10, and IL-6 were elevated by 6.9, 4.3, and 7 folds in the CBNP exposure group. In addition, Lactobacillus, Escherichia, Lactococcus, and Muribacter were dominant in the lung microbiota of LFB+GR-3 than the CBNP group. The use of probiotic fermented lily bulbs might be helpful in lung infection treatment.


Assuntos
Lilium , Probióticos , Animais , Camundongos , Lilium/química , Plantas , Raízes de Plantas/química , Pulmão
2.
Bioresour Technol ; 370: 128501, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36538958

RESUMO

Anaerobic co-digestion (AcoD) offers several merits such as better digestibility and process stability while enhancing methane yield due to synergistic effects. Operation of an efficient AcoD system, however, requires full comprehension of important operational parameters, such as co-substrates ratio, their composition, volatile fatty acids/alkalinity ratio, organic loading rate, and solids/hydraulic retention time. AcoD process optimization, prediction and control, and early detection of system instability are often difficult to achieve through tedious manual monitoring processes. Recently, artificial intelligence (AI) has emerged as an innovative approach to computational modeling and optimization of the AcoD process. This review discusses AI applications in AcoD process optimization, control, prediction of unknown input/output parameters, and real-time monitoring. Furthermore, the review also compares standalone and hybrid AI algorithms as applied to AcoD. The review highlights future research directions for data preprocessing, model interpretation and validation, and grey-box modeling in AcoD process.


Assuntos
Inteligência Artificial , Reatores Biológicos , Anaerobiose , Metano , Digestão , Biocombustíveis
3.
Bioresour Technol ; 360: 127558, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35780934

RESUMO

Ammonia stress is a commonly encountered issue in anaerobic digestion (AD) process when treating proteinaceous substrates. The enhanced relationship between syntrophic bacteria and methanogens triggered by interspecies electron transfer (IET) stimulation is one of the potential mechanisms for an improved methane yield from the AD plant under ammonia-stressed condition. There is, however, lack of synthesized information on the mechanistic understanding of IET facilitation in the ammonia-stressed AD processes. This review critically discusses recovery of AD system from ammonia-stressed condition, focusing on H2 transfer, redox compound-mediated IET, and conductive material-induced direct IET. The effects and the associated mechanisms of IET stimulation on mitigating ammonia stress and promoting methanogenesis were elucidated. Finally, prospects and challenges of IET stimulation were critically discussed. This review highlights, for the first time, the critical role of IET stimulation in enhancing AD process under ammonia-stressed condition.


Assuntos
Amônia , Elétrons , Anaerobiose , Reatores Biológicos , Transporte de Elétrons , Metano
4.
Bioresour Technol ; 361: 127667, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35878778

RESUMO

Pharmaceuticalsare a diverse group of chemical compounds widely used for prevention and treatment of infectious diseases in both humans and animals. Pharmaceuticals, either in their original or metabolite form, find way into the wastewater treatment plants (WWTPs) from different sources. Recently, anaerobic membrane bioreactors (AnMBR) has received significant research attention for the treatment of pharmaceuticals in various wastewater streams. This review critically examines the behaviour and removal of a wide array of pharmaceuticals in AnMBR with primary focus on their removal efficiencies and mechanisms, critical influencing factors, and the microbial community structures. Subsequently, the inhibitory effects of pharmaceuticals on the performance of AnMBR and membrane fouling are critically discussed. Furthermore, the imperative role of membrane biofouling layer and its components in pharmaceuticals removal is highlighted. Finally, recent advancements in AnMBR configurations for membrane fouling control and enhanced pharmaceuticals removal are systemically discussed.


Assuntos
Membranas Artificiais , Águas Residuárias , Anaerobiose , Reatores Biológicos , Humanos , Preparações Farmacêuticas , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias/química
5.
Bioresour Technol ; 337: 125378, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34166927

RESUMO

Anaerobic digestion (AD) is a matured technology for waste (water) remediation/stabilization and bioenergy generation in the form of biogas. AD technology has several inherent benefits ranging from generating renewable energy, remediating waste (water), and reducing greenhouse gas emission to improving health/hygiene and the overall socio-economic status of rural communities in developing nations. In recent years, there has been a paradigm shift in applications of AD technology beyond biogas. This special issue (SI) entitled, "Anaerobic Digestion Beyond Biogas (ADBB-2021)," was conceptualized to incorporate some of the recent advances in AD in which the emphasis is beyond biogas, such as anaerobic biorefinery, chain elongation, treatment of micropollutants, toxicity and system stability, digestate as biofertilizer, bio-electrochemical systems, innovative bioreactors, carbon sequestration, biogas upgrading, microbiomes, waste (water) remediation, residues/waste pre-treatment, promoter addition, and modeling, process control, and automation, among others. This VSI: ADBB-2021 contains 53 manuscripts (14 critical reviews and 39 research). The key findings of each manuscript are briefly summarized here, which can serve as a valuable resource for AD researchers to learn of major advances in AD technology and identify future research directions.


Assuntos
Biocombustíveis , Reatores Biológicos , Anaerobiose , Metano , Águas Residuárias
6.
Bioresour Technol ; 330: 125001, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33773269

RESUMO

Anaerobic digestion is a long-established technology for the valorization of diverse organic wastes with concomitant generation of valuable resources. However, mono-digestion (i.e., anaerobic digestion using one feedstock) suffers from challenges associated with feedstock characteristics. Co-digestion using multiple feedstocks provides the potential to overcome these limitations. Significant research and development efforts have highlighted several inherent merits of co-digestion, including enhanced digestibility due to synergistic effects of co-substrates, better process stability, and higher nutrient value of the produced co-digestate. However, studies focused on the underlying effects of diverse co-feedstocks on digester performance and stability have not been synthesized so far. This review fills this gap by highlighting the limitations of mono-digestion and critically examining the benefits of co-digestion. Furthermore, this review discusses synergistic effect of co-substrates, characterization of microbial communities, the prediction of biogas production via different kinetic models, and highlights future research directions for the development of a sustainable biorefinery.


Assuntos
Reatores Biológicos , Microbiota , Anaerobiose , Biocombustíveis , Digestão , Metano
7.
Bioresour Technol ; 300: 122593, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31881517

RESUMO

Experimental conditions of liquid hot water (LHW) pretreatment were tested for two dedicated energy crops, Napiergrass (Pennisetum purpureum) and Energycane (Saccharum officinarum × Saccharum robustum). Both crops showed differential resistance to temperature during pretreatment and differences in response to biomass and enzyme loadings during subsequent enzymatic hydrolysis. Sugar response surfaces, for both glucose release per g pretreated biomass and as percent yield of glucose present in the initial biomass, were estimated using a General Additive Model (GAM) in R to compare non-linear sugar release as temperature, and biomass and enzyme loadings were manipulated. Compared to Napiergrass, more structural glucose is estimated to be recovered from Energycane per g of pretreated biomass under relatively less harsh pretreatment conditions, however, Napiergrass had the highest measured glucose yield. Sugar degradation products (furfural and hydroxymethylfurfural), pH, and biomass recovery differed significantly between crops across pretreatment temperatures, which could adversely affect downstream biochemical processes.


Assuntos
Lignina , Açúcares , Biomassa , Temperatura Alta , Hidrólise , Temperatura , Água
8.
Bioresour Technol ; 288: 121592, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31176940

RESUMO

This study investigated sulfamethoxazole (SMX) removal and fate in sulfate-reducing up-flow sludge bed (SRUSB) reactors inoculated with sulfate-reducing bacteria (SRB) granules and flocs. The resilience of SRB granules and flocs against varying pHs and hydraulic retention times (HRTs) was also examined. SRB granules and flocs efficiently removed SMX from wastewater, which was significantly higher than the aerobic sludge. SRB granules achieved significantly (p < 0.05) higher SMX removal (∼13.3 µg/g suspended solids (SS)-d) than the SRB flocs (∼11.2 µg/g SS-d) during 150-day of SRUSB reactors operation. The SMX removal by both granules and flocs was mainly attributed to biodegradation. Sorption also contributed to SMX removal, in which aromatic protein-like substances of extracellular polymeric substances played important role in SMX removal. In addition, SRB granules showed higher resilience than SRB flocs against varying pHs and HRTs. Thus, SRB-mediated biological process, especially SRB granules, could be a promising biotechnology to remove SMX from wastewaters.


Assuntos
Esgotos , Sulfametoxazol , Reatores Biológicos , Sulfatos , Eliminação de Resíduos Líquidos
9.
Bioresour Technol ; 266: 364-373, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29982059

RESUMO

Coke oven gas is considered as a potential hydrogen source for biogas bio-upgrading. In this study, the effects of CO on biomethanation performance and microbial community structure of hydrogenotrophic mixed cultures were investigated under thermophilic (55 °C) and extreme-thermophilic (70 °C) conditions. 5% (v/v) CO did not inhibit hydrogenotrophic methanogenesis during semi-continuous operation, and 83-97% CO conversion to CH4 was achieved. Methanothermobacter thermoautotrophicus was the dominant methanogen at both temperatures and was the main functional archaea associated with CO biomethanation. Specific methanogenic activity test results showed that long-term 5% CO acclimation shortened the lag phase from 5 h to 1 h at 55 °C and 15 h to 3 h at 70 °C. CO2 was the preferred carbon source over CO for hydrogenotrophic methanogens and CO consumption only started when CO2 was completely depleted. M. thermoautotrophicus dominated mixed cultures showed a great potential in simultaneous hydrogenotrophic methanogenesis and CO biomethanation.


Assuntos
Reatores Biológicos , Metano/biossíntese , Bactérias , Biocombustíveis , Dióxido de Carbono , Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA