Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Infect Dis ; 10(3): 845-857, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38363869

RESUMO

Myeloid differentiation factor 2 (MD2), the TLR4 coreceptor, has been shown to possess opsonic activity and has been implicated in phagocytosis and intracellular killing of Gram-negative bacteria. However, any MD2 protein segment involved in phagocytosis of Gram-negative bacteria is not yet known. A short synthetic MD2 segment, MD54 (amino acid regions 54 to 69), was shown to interact with a Gram-negative bacterial outer membrane component, LPS, earlier. Furthermore, the MD54 peptide induced aggregation of LPS and facilitated its internalization in THP-1 cells. Currently, it has been investigated if MD2-derived MD54 possesses any opsonic property and role in phagocytosis of Gram-negative bacteria. Remarkably, we observed that MD54 facilitated agglutination of Gram-negative bacteria, Escherichia coli (ATCC 25922) and Pseudomonas aeruginosa (ATCC BAA-427), but not of Gram-positive bacteria, Bacillus subtilis (ATCC 6633) and Staphylococcus aureus (ATCC 25923). The MD54-opsonized Gram-negative bacteria internalized within PMA-treated THP-1 cells and were killed over a longer incubation period. However, both internalization and intracellular killing of the MD54-opsonized Gram-negative bacteria within THP-1 phagocytes were appreciably inhibited in the presence of a phagocytosis inhibitor, cytochalasin D. Furthermore, MD54 facilitated the clearance of Gram-negative bacteria E. coli (ATCC 25922) and P. aeruginosa (ATCC BAA-427) from the infected BALB/c mice whereas an MD54 analog, MMD54, was inactive. Overall, for the first time, the results revealed that a short MD2-derived peptide can specifically agglutinate Gram-negative bacteria, act as an opsonin for these bacteria, and facilitate their phagocytosis by THP-1 phagocytes. The results suggest that the MD54 segment could have a crucial role in MD2-mediated host-pathogen interaction involving the Gram-negative bacteria.


Assuntos
Escherichia coli , Lipopolissacarídeos , Animais , Camundongos , Lipopolissacarídeos/metabolismo , Escherichia coli/metabolismo , Fagocitose , Macrófagos/metabolismo , Bactérias Gram-Negativas/metabolismo
2.
Biochem J ; 481(4): 191-218, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38224573

RESUMO

Insulin resistance (IR) is the key pathophysiological cause of type 2 diabetes, and inflammation has been implicated in it. The death domain (DD) of the adaptor protein, MyD88 plays a crucial role in the transduction of TLR4-associated inflammatory signal. Herein, we have identified a 10-residue peptide (M10), from the DD of MyD88 which seems to be involved in Myddosome formation. We hypothesized that M10 could inhibit MyD88-dependent TLR4-signaling and might have effects on inflammation-associated IR. Intriguingly, 10-mer M10 showed oligomeric nature and reversible self-assembly property indicating the peptide's ability to recognize its own amino acid sequence. M10 inhibited LPS-induced nuclear translocation of NF-κB in L6 myotubes and also reduced LPS-induced IL-6 and TNF-α production in peritoneal macrophages of BALB/c mice. Remarkably, M10 inhibited IL-6 and TNF-α secretion in diabetic, db/db mice. Notably, M10 abrogated IR in insulin-resistant L6 myotubes, which was associated with an increase in glucose uptake and a decrease in Ser307-phosphorylation of IRS1, TNF-α-induced JNK activation and nuclear translocation of NF-κB in these cells. Alternate day dosing with M10 (10 and 20 mg/kg) for 30 days in db/db mice significantly lowered blood glucose and improved glucose intolerance after loading, 3.0 g/kg glucose orally. Furthermore, M10 increased insulin and adiponectin secretion in db/db mice. M10-induced glucose uptake in L6 myotubes involved the activation of PI3K/AKT/GLUT4 pathways. A scrambled M10-analog was mostly inactive. Overall, the results show the identification of a 10-mer peptide from the DD of MyD88 with anti-inflammatory and anti-diabetic properties, suggesting that targeting of TLR4-inflammatory pathway, could lead to the discovery of molecules against IR and diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Glicemia , Domínio de Morte , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Inflamação/tratamento farmacológico , Insulina/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/toxicidade , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Peptídeos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
3.
Circ Res ; 132(11): e206-e222, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37132383

RESUMO

BACKGROUND: Platelet adhesion and aggregation play a crucial role in arterial thrombosis and ischemic stroke. Here, we identify platelet ERO1α (endoplasmic reticulum oxidoreductase 1α) as a novel regulator of Ca2+ signaling and a potential pharmacological target for treating thrombotic diseases. METHODS: Intravital microscopy, animal disease models, and a wide range of cell biological studies were utilized to demonstrate the pathophysiological role of ERO1α in arteriolar and arterial thrombosis and to prove the importance of platelet ERO1α in platelet activation and aggregation. Mass spectrometry, electron microscopy, and biochemical studies were used to investigate the molecular mechanism. We used novel blocking antibodies and small-molecule inhibitors to study whether ERO1α can be targeted to attenuate thrombotic conditions. RESULTS: Megakaryocyte-specific or global deletion of Ero1α in mice similarly reduced platelet thrombus formation in arteriolar and arterial thrombosis without affecting tail bleeding times and blood loss following vascular injury. We observed that platelet ERO1α localized exclusively in the dense tubular system and promoted Ca2+ mobilization, platelet activation, and aggregation. Platelet ERO1α directly interacted with STIM1 (stromal interaction molecule 1) and SERCA2 (sarco/endoplasmic reticulum Ca2+-ATPase 2) and regulated their functions. Such interactions were impaired in mutant STIM1-Cys49/56Ser and mutant SERCA2-Cys875/887Ser. We found that ERO1α modified an allosteric Cys49-Cys56 disulfide bond in STIM1 and a Cys875-Cys887 disulfide bond in SERCA2, contributing to Ca2+ store content and increasing cytosolic Ca2+ levels during platelet activation. Inhibition of Ero1α with small-molecule inhibitors but not blocking antibodies attenuated arteriolar and arterial thrombosis and reduced infarct volume following focal brain ischemia in mice. CONCLUSIONS: Our results suggest that ERO1α acts as a thiol oxidase for Ca2+ signaling molecules, STIM1 and SERCA2, and enhances cytosolic Ca2+ levels, promoting platelet activation and aggregation. Our study provides evidence that ERO1α may be a potential target to reduce thrombotic events.


Assuntos
AVC Isquêmico , Trombose , Animais , Camundongos , Plaquetas/metabolismo , Sinalização do Cálcio , Dissulfetos , AVC Isquêmico/metabolismo , Ativação Plaquetária
4.
Plants (Basel) ; 12(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37176873

RESUMO

Arsenic (As) is a metalloid prevalent mainly in soil and water. The presence of As above permissible levels becomes toxic and detrimental to living organisms, therefore, making it a significant global concern. Humans can absorb As through drinking polluted water and consuming As-contaminated food material grown in soil having As problems. Since human beings are mobile organisms, they can use clean uncontaminated water and food found through various channels or switch from an As-contaminated area to a clean area; but plants are sessile and obtain As along with essential minerals and water through roots that make them more susceptible to arsenic poisoning and consequent stress. Arsenic and phosphorus have many similarities in terms of their physical and chemical characteristics, and they commonly compete to cause physiological anomalies in biological systems that contribute to further stress. Initial indicators of arsenic's propensity to induce toxicity in plants are a decrease in yield and a loss in plant biomass. This is accompanied by considerable physiological alterations; including instant oxidative surge; followed by essential biomolecule oxidation. These variables ultimately result in cell permeability and an electrolyte imbalance. In addition, arsenic disturbs the nucleic acids, the transcription process, and the essential enzymes engaged with the plant system's primary metabolic pathways. To lessen As absorption by plants, a variety of mitigation strategies have been proposed which include agronomic practices, plant breeding, genetic manipulation, computer-aided modeling, biochemical techniques, and the altering of human approaches regarding consumption and pollution, and in these ways, increased awareness may be generated. These mitigation strategies will further help in ensuring good health, food security, and environmental sustainability. This article summarises the nature of the impact of arsenic on plants, the physio-biochemical mechanisms evolved to cope with As stress, and the mitigation measures that can be employed to eliminate the negative effects of As.

5.
ACS Chem Biol ; 17(12): 3420-3434, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36367958

RESUMO

Naturally occurring cationic antimicrobial peptides (AMPs) mostly adopt α-helical structures in bacterial membrane mimetic environments. To explore the design of novel ß-sheet AMPs, we identified two short cationic amphipathic ß-strand segments from the crystal structure of the innate immune protein, MyD88. Interestingly, of these, the 10-residue arginine-valine-rich synthetic MyD88-segment, KRCRRMVVVV (M3), exhibited ß-sheet structure when bound to the outer membrane Gram-negative bacterial component, LPS. Isothermal titration calorimetric data showed that M3 bound to LPS with high affinity, and the interaction was hydrophobic in nature. Supporting these observations, computational studies indicated strong interactions of multiple and consecutive valine residues of M3 with the acyl chain of LPS. Moreover, M3 adopted nanosheet and nanofibrillar structure in 25% acetonitrile/water and isopropanol, respectively. M3 showed substantial antibacterial activities against both Gram-positive and Gram-negative bacteria which it appreciably retained in the presence of human serum and physiological salts. M3 was non-hemolytic against human red blood cells and non-cytotoxic to 3T3 cells up to 200 µM and to mice in vivo at a dose of 40 mg/kg. Furthermore, M3 neutralized LPS-induced pro-inflammatory responses in THP-1 cells and rat bone marrow-derived macrophages. Consequently, M3 attenuated LPS-mediated lung inflammation in mice and rescued them (80% survival at 10 mg/kg dose) against a lethal dose of LPS. The results demonstrate the identification of a 10-mer LPS-interacting, ß-sheet peptide from MyD88 with the ability to form nanostructures and in vivo activity against LPS challenge in mice. The identified M3-template provides scope for designing novel bioactive peptides with ß-sheet structures and self-assembling properties.


Assuntos
Lipopolissacarídeos , Pneumonia , Camundongos , Humanos , Ratos , Animais , Lipopolissacarídeos/química , Antibacterianos/farmacologia , Conformação Proteica em Folha beta , Endotoxinas , Bactérias Gram-Negativas , Fator 88 de Diferenciação Mieloide , Bactérias Gram-Positivas , Peptídeos Catiônicos Antimicrobianos/farmacologia , Valina , Pulmão
6.
Biol Cell ; 114(10): 276-292, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35713972

RESUMO

BACKGROUND: HIV-1 Nef regulates several cellular functions in an infected cell which results in viral persistence and AIDS pathogenesis. The currently understood molecular mechanism(s) underlying Nef-dependent cellular function(s) are unable to explain how events are coordinately regulated in the host cell. Intracellular membranous trafficking maintains cellular homeostasis and is regulated by Rab GTPases - a member of the Ras superfamily. RESULTS: In the current study, we tried to decipher the role of Nef on the Rab GTPases-dependent complex and vesicular trafficking. Expression profiling of Rabs in Nef-expressing cells showed that Nef differentially regulates the expression of individual Rabs in a cell-specific manner. Further analysis of Rabs in HIV-1NL4-3 or ΔNef infected cells demonstrated that the Nef protein is responsible for variation in Rabs expression. Using a panel of competitive peptide inhibitors against Nef, we identified the critical domain of HIV-1 Nef involved in modulation of Rabs expression. The molecular function of Nef-mediated upregulation of Rab5 and Rab7 and downregulation of Rab11 increased the transport of SERINC5 from the cell surface to the lysosomal compartment. Moreover, the Nef-dependent increase in Rab27 expression assists exosome release. Reversal of Rabs expression using competitive inhibitors against Nef and manipulation of Rabs expression reduced viral release and infectivity of progeny virions. CONCLUSION: This study demonstrates that Nef differentially regulates the expression of Rab proteins in HIV-1 infected cells to hijack the host intracellular trafficking, which augments viral replication and HIV-1 pathogenesis. SIGNIFICANCE: Our study emphasized the indispensable role of HIV-1 protein Nef on various aspects of the intracellular trafficking regulated by Rabs GTPases, which explained how HIV-1 Nef may hijack membrane trafficking pathways in infected cells.


Assuntos
HIV-1 , HIV-1/fisiologia , Proteínas de Membrana/metabolismo , Vírion/química , Vírion/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/análise , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
7.
J Exp Med ; 219(1)2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34751735

RESUMO

The interaction between neutrophils and endothelial cells is critical for the pathogenesis of vascular inflammation. However, the regulation of neutrophil adhesive function remains not fully understood. Intravital microscopy demonstrates that neutrophil DREAM promotes neutrophil recruitment to sites of inflammation induced by TNF-α but not MIP-2 or fMLP. We observe that neutrophil DREAM represses expression of A20, a negative regulator of NF-κB activity, and enhances expression of pro-inflammatory molecules and phosphorylation of IκB kinase (IKK) after TNF-α stimulation. Studies using genetic and pharmacologic approaches reveal that DREAM deficiency and IKKß inhibition significantly diminish the ligand-binding activity of ß2 integrins in TNF-α-stimulated neutrophils or neutrophil-like HL-60 cells. Neutrophil DREAM promotes degranulation through IKKß-mediated SNAP-23 phosphorylation. Using sickle cell disease mice lacking DREAM, we show that hematopoietic DREAM promotes vaso-occlusive events in microvessels following TNF-α challenge. Our study provides evidence that targeting DREAM might be a novel therapeutic strategy to reduce excessive neutrophil recruitment in inflammatory diseases.


Assuntos
Inflamação/genética , Proteínas Interatuantes com Canais de Kv/genética , Microvasos/metabolismo , Infiltração de Neutrófilos/genética , Neutrófilos/metabolismo , Proteínas Repressoras/genética , Animais , Adesão Celular/efeitos dos fármacos , Regulação da Expressão Gênica , Células HL-60 , Humanos , Quinase I-kappa B/metabolismo , Inflamação/metabolismo , Proteínas Interatuantes com Canais de Kv/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microvasos/patologia , NF-kappa B/metabolismo , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
8.
Antioxid Redox Signal ; 35(13): 1093-1115, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34074138

RESUMO

Significance: Protein disulfide isomerase (PDI) and endoplasmic reticulum oxidoreductase 1 (ERO1) are crucial for oxidative protein folding in the endoplasmic reticulum (ER). These enzymes are frequently overexpressed and secreted, and they contribute to the pathology of neurodegenerative, cardiovascular, and metabolic diseases. Recent Advances: Tissue-specific knockout mouse models and pharmacologic inhibitors have been developed to advance our understanding of the cell-specific functions of PDI and ERO1. In addition to their roles in protecting cells from the unfolded protein response and oxidative stress, recent studies have revealed that PDI and ERO1 also function outside of the cells. Critical Issues: Despite the well-known contributions of PDI and ERO1 to specific disease pathology, the detailed molecular and cellular mechanisms underlying these activities remain to be elucidated. Further, although PDI and ERO1 inhibitors have been identified, the results from previous studies require careful evaluation, as many of these agents are not selective and may have significant cytotoxicity. Future Directions: The functions of PDI and ERO1 in the ER have been extensively studied. Additional studies will be required to define their functions outside the ER.


Assuntos
Doenças Cardiovasculares/metabolismo , Glicoproteínas de Membrana/metabolismo , Doenças Metabólicas/metabolismo , Doenças Neurodegenerativas/metabolismo , Oxirredutases/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Animais , Humanos , Transdução de Sinais
9.
Vet World ; 13(9): 2006-2011, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33132618

RESUMO

BACKGROUND AND AIM: Alpha-tocopherol supplementation influences milk yield, milk quality, and udder health of dairy cows, which needs to be investigated for Jersey crossbred cows at hot-humid climate. Therefore, the present study was framed with an objective to study the effect of pre and postpartum Alpha-tocopherol supplementation on milk yield, milk quality, and udder health status of Jersey crossbred cows at tropical climate. MATERIALS AND METHODS: For this study, 19 similar parity, body condition score, and production level dairy animals were separated randomly into three groups, namely, Control, T1 and T2. Control group (no supplementation) was compared with two treatment groups, namely, T1 and T2. Supplementation of Alpha-tocopherol was done in concentrate fed to the animals (at 1 g/cow/day) 30 days prepartum to 30 days postpartum in T1 and 30 days prepartum to 60 days postpartum in T2 groups. Observations were taken for different parameters up to 5 months of lactation. RESULTS: Statistically analyzed data revealed that overall significantly (p<0.01) more milk production was found in T2, followed by T1 than the control group. Overall significantly (p<0.01) lower somatic cell counts and modified California mastitis tests were recorded in T2, followed by T1 than the control group. Overall significantly (p<0.01), better milk quality in terms of methylene blue reduction test was found in T2, followed by T1 than control groups. Differences in the milk composition of all three groups were non-significant (p>0.05). CONCLUSION: Supplementation of Alpha-tocopherol during prepartum to initial lactation period may enhance milk yield, milk quality, and udder health status of Jersey crossbred cows at the tropical lower Gangetic region.

10.
ACS Infect Dis ; 6(9): 2369-2385, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32786286

RESUMO

Cytotoxic frog antimicrobial peptide Temporin L (TempL) is an attractive molecule for the design of lead antimicrobial agents due to its short size and versatile biological activities. However, noncytotoxic TempL variants with desirable biological activities have rarely been reported. TempL analogue Q3K,TempL is water-soluble and possesses a significant antiendotoxin property along with comparable cytotoxicity to TempL. A phenylalanine residue, located at the hydrophobic face of Q3K,TempL and the "d" position of its phenylalanine zipper sequence, was replaced with a cationic lysine residue. This analogue, Q3K,F8K,TempL, showed reduced hydrophobic moment and was noncytotoxic with lower antimicrobial activity. Interestingly, swapping between tryptophan at the fourth and serine at the sixth positions turned Q3K,F8K,TempL totally amphipathic as reflected by its helical wheel projection with clusters of hydrophobic and hydrophilic residues and the highest hydrophobic moment among these peptides. Surprisingly, this analogue, SW,Q3K,F8K,TempL, was as noncytotoxic as Q3K,F8K,TempL but showed augmented antimicrobial and antiendotoxin properties, comparable to that of TempL and Q3K,TempL. SW,Q3K,F8K,TempL exhibited appreciable survival of mice against P. aeruginosa infection and a lipopolysaccharide (LPS) challenge. Unlike TempL and Q3K,TempL, SW,Q3K,F8K,TempL adopted an unordered secondary structure in bacterial membrane mimetic lipid vesicles and did not permeabilize them or depolarize the bacterial membrane. Overall, the results demonstrate the design of a nontoxic TempL analogue that possesses clusters of hydrophobic and hydrophilic residues with impaired secondary structure and shows a nonmembrane-lytic mechanism and in vivo antiendotoxin and antimicrobial activities. This paradigm of design of antimicrobial peptide with clusters of hydrophobic and hydrophilic residues and high hydrophobic moment but low secondary structure could be attempted further.


Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Animais , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/toxicidade , Camundongos , Estrutura Secundária de Proteína
11.
J Biol Chem ; 293(35): 13509-13523, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-29991592

RESUMO

Adiponectin is a fat tissue-derived adipokine with beneficial effects against diabetes, cardiovascular diseases, and cancer. Accordingly, adiponectin-mimetic molecules possess significant pharmacological potential. Oligomeric states of adiponectin appear to determine its biological activity. We identified a highly conserved, 13-residue segment (ADP-1) from adiponectin's collagen domain, which comprises GXXG motifs and has one asparagine and two histidine residues that assist in oligomeric protein assembly. We therefore hypothesized that ADP-1 promotes oligomeric assembly and thereby mediates potential metabolic effects. We observed here that ADP-1 is stable in human serum and oligomerizes in aqueous environments. We also found that ADP-1 activates AMP-activated protein kinase (AMPK) in an adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1 (APPL1)-dependent pathway and stimulates glucose uptake in rat skeletal muscle cells (L6 myotubes). ADP-1-induced glucose transport coincided with ADP-1-induced biosynthesis of glucose transporter 4 and its translocation to the plasma membrane. ADP-1 induced an interaction between APPL1 and the small GTPase Rab5, resulting in AMPK phosphorylation, in turn leading to phosphorylation of p38 mitogen-activated protein kinase (MAPK), acetyl-CoA carboxylase, and peroxisome proliferator-activated receptor α. Similar to adiponectin, ADP-1 increased the expression of the adiponectin receptor 1 (AdipoR1) gene. Of note, ADP-1 decreased blood glucose levels and enhanced insulin production in pancreatic ß cells in db/db mice. Further, ADP-1 beneficially affected lipid metabolism by enhancing lipid globule formation in mouse 3T3-L1 adipocytes. To our knowledge, this is the first report on identification of a short peptide from adiponectin with positive effects on glucose or fatty acid metabolism.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adiponectina/metabolismo , Ácidos Graxos/metabolismo , Glucose/metabolismo , Peptídeos/metabolismo , Transdução de Sinais , Células 3T3-L1 , Adiponectina/química , Adiponectina/farmacologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Células Cultivadas , Colágeno/química , Colágeno/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Hipoglicemiantes/química , Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacologia , Camundongos , Peptídeos/química , Peptídeos/farmacologia , Domínios Proteicos , Ratos , Alinhamento de Sequência , Transdução de Sinais/efeitos dos fármacos
12.
Sci Rep ; 7(1): 3384, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28611397

RESUMO

Marine fish antimicrobial peptide, chrysophsin-1 possesses versatile biological activities but its non-selective nature restricts its therapeutic possibilities. Often small alterations in structural motifs result in significant changes in the properties of concerned proteins/peptides. We have identified GXXXXG motif in chrysophsin-1. Glycine residue(s) of this motif in Chrysophsin-1 was/were replaced with alanine, valine and proline residue(s). Of these, proline-substituted Chrysophsin-1 analogs exhibited significantly reduced cytotoxicity towards mammalian cells. Further, these analogs showed broad-spectrum activity against Gram-positive, Gram-negative bacteria, Methicillin-resistant Staphylococcus aureus strains and fungi and also retained antibacterial activity in presence of physiological salts, serum and at elevated temperatures indicative of their therapeutic potential. These Chrysophsin-1 analogs also inhibited lipopolysaccharide (LPS) induced pro-inflammatory responses in THP-1 cells and in murine primary macrophages. One of these single proline-substituted Chrysophsin-1 analogs inhibited LPS-stimulated pro-inflammatory cytokine production in BALB/c mice and elicited appreciable survival of mice administered with a lethal dose of LPS in a model of severe sepsis. The data for the first time showed the implication of GXXXXG motifs in functional and biological properties of an antimicrobial peptide and could be useful to design novel anti-microbial and anti-endotoxin peptides by employing this motif.


Assuntos
Motivos de Aminoácidos , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias/crescimento & desenvolvimento , Desenho de Fármacos , Fungos/crescimento & desenvolvimento , Lipopolissacarídeos/antagonistas & inibidores , Animais , Anti-Infecciosos/química , Peptídeos Catiônicos Antimicrobianos/química , Bactérias/efeitos dos fármacos , Fungos/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana
13.
Acta Biomater ; 57: 170-186, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28483698

RESUMO

Introducing cell-selectivity in antimicrobial peptides (AMPs) without compromising the antimicrobial and anti-endotoxin properties is a crucial step towards the development of new antimicrobial agents. A peptide designed on phenylalanine heptad repeat possesses significant cytotoxicity along with desired antimicrobial and anti-endotoxin properties. Amino acid substitutions at 'a' and/or 'd' positions of heptad repeats of AMPs could alter their helical structure in mammalian membrane-mimetic environments and cytotoxicity towards mammalian cells. Since proline is a helix breaker, effects of selective proline substitution(s) at 'a' and/or 'd' positions of a 15-residue peptide designed on phenylalanine heptad repeat (FR-15) were investigated. Proline-substituted FR-15 variants were highly selective toward bacteria and fungi over hRBCs and murine 3T3 cells and also retained their antibacterial activities at high salt, serum and elevated temperatures. These non-cytotoxic variants also inhibited LPS-induced production of pro-inflammatory cytokines/chemokines in human monocytes, THP-1, RAW 264.7 and in BALB/c mice. The two non-cytotoxic variants (FR8P and FR11P) showed potent anti-cancer activity against highly metastatic human breast cancer cell line MDA-MB-231 with IC50 values less than 10µM. At sub-IC50 concentrations, FR8P and FR11P also showed anti-migratory and anti-invasive effects against MDA-MB-231 cells. FR8P and FR11P induced cellular apoptosis by triggering intrinsic apoptotic pathway through depolarization of mitochondrial membrane potential and activation of caspases. Overall the results demonstrated the utilization of selective phenylalanine to proline substitution in a heptad repeat of phenylalanine residues for the design of cell-selective, broad-spectrum AMPs with significant anti-cancer properties. STATEMENT OF SIGNIFICANCE: We have demonstrated a methodology to design cell-selective potent antimicrobial and anti-endotoxin peptides by utilizing phenylalanine zipper as a template and replacement of phenylalanine residue(s) from "a" and/or "d" position(s) with proline residue(s) produced non-cytotoxic AMPs with improved antibacterial properties against the drug-resistant strains of bacteria. The work showed that the 'a' and 'd' positions of the phenylalanine heptad repeat could be replaced by an appropriate amino acid to control cytotoxicity of the peptide without compromising its potency in antimicrobial and anti-endotoxin properties. The direct bacterial membrane targeting mechanism of proline substituted analogs of parent peptide makes difficult for bacteria to grow resistance against them. The peptides designed could be lead molecules in the area of sepsis as they possess significant anti-LPS activities for in vitro and in vivo. Interestingly since cancer cells and bacterial cell membranes possess the structural resemblances, the cancer cells are also targets for these peptides making them lead molecules in this field. However, unlike in bacteria where the peptides showed membrane permeabilization property to lyse them, the peptides induced apoptosis in MDA-MB-231 breast cancer cells to inhibit their proliferation and growth. The results are significant because it reveals that "a" and "d" positions of a phenylalanine zipper can be utilized as switches to design cell-selective, antimicrobial, anti-endotoxin and anticancer peptides.


Assuntos
Substituição de Aminoácidos , Antibacterianos , Peptídeos Catiônicos Antimicrobianos , Antineoplásicos , Neoplasias da Mama/tratamento farmacológico , Escherichia coli/crescimento & desenvolvimento , Células 3T3 , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Humanos , Camundongos , Fenilalanina/química , Fenilalanina/genética , Prolina/química , Prolina/genética , Células RAW 264.7 , Sequências Repetitivas de Aminoácidos , Células THP-1
14.
Curr Comput Aided Drug Des ; 10(4): 315-26, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25994638

RESUMO

Peptide deformylase (PDF) has emerged as an important antibacterial drug target. Considerable effort is being directed toward developing peptidic and non-peptidic inhibitors for this metalloprotein. In this work, the known peptidic inhibitor BB-3497 and its various ionization and tautomeric states are evaluated for their inhibition efficiency against PDF using a molecular mechanics (MM) approach as well as a mixed quantum mechanics/molecular mechanics (QM/MM) approach, with an aim to understand the interactions in the binding site. The evaluated Gibbs energies of binding with the mixed QM/MM approach are shown to have the best predictive power. The experimental pose is found to have the most negative Gibbs energy of binding, and also the smallest strain energy. A quantum mechanical evaluation of the active site reveals the requirement of strong chelation by the ligand with the metal ion. The investigated ligand chelates the metal ion through the two oxygens of its reverse hydroxamate moiety, particularly the N-O(-) oxygen, forming strong covalent bonds with the metal ion, which is penta-coordinated. In the uninhibited state, the metal ion is tetrahedrally coordinated, and hence chelation with the inhibitor is associated with an increase of the metal ion coordination. Thus, the strong binding of the ligand at the binding site is accounted for.


Assuntos
Amidoidrolases/química , Amidoidrolases/metabolismo , Ácidos Hidroxâmicos/química , Simulação de Acoplamento Molecular , Amidoidrolases/antagonistas & inibidores , Sítios de Ligação , Quelantes/química , Quelantes/farmacologia , Ácidos Hidroxâmicos/farmacologia , Ligação Proteica/efeitos dos fármacos , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...