Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fluoresc ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478265

RESUMO

Optimizing the optoelectronic characteristics of low-dimensional carbon dots (CDs) through surface modifications and doping has proven instrumental in tailoring them for diverse applications. This study explores a facile and economical hydrothermal synthesis method for generating Carbonized Polymer Dots using o-phenylenediamine at different temperatures. The resulting materials exhibit structural and morphological variations linked to the synthesis temperature. A transition from carbon dots (CDs) embedded in reduced graphene oxide (rGO)-like sheet structures at low temperatures to the core-shell structure at the highest temperature is observed in HR-TEM, implying the formation of CPDs. X-ray photoelectron spectroscopy (XPS) corroborates these findings, showing an augmented degree of graphitization in alignment with HR-TEM results. The photoluminescence spectra of CPDs synthesized at the lowest temperature exhibit multiple emission peaks, resulting in a yellowish-orange color. Utilizing these CPDs to fabricate light-emitting diodes (LEDs) produces a vivid bright-green emission with CIE coordinates (0.378, 0.522). Moreover, the CPDs demonstrate solvatochromism across diverse solvents of varying polarity, covering the entire visible spectrum. This intriguing solvatochromic effect positions the CPDs as promising materials for polarity probing applications.

2.
Small ; 20(14): e2307167, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38152930

RESUMO

Atomically thin, few-layered membranes of oxides show unique physical and chemical properties compared to their bulk forms. Manganese oxide (Mn3O4) membranes are exfoliated from the naturally occurring mineral Hausmannite and used to make flexible, high-performance nanogenerators (NGs). An enhanced power density in the membrane NG is observed with the best-performing device showing a power density of 7.99 mW m-2 compared to 1.04 µW m-2 in bulk Mn3O4. A sensitivity of 108 mV kPa-1 for applied forces <10 N in the membrane NG is observed. The improved performance of these NGs is attributed to enhanced flexoelectric response in a few layers of Mn3O4. Using first-principles calculations, the flexoelectric coefficients of monolayer and bilayer Mn3O4 are found to be 50-100 times larger than other 2D transition metal dichalcogenides (TMDCs). Using a model based on classical beam theory, an increasing activation of the bending mode with decreasing thickness of the oxide membranes is observed, which in turn leads to a large flexoelectric response. As a proof-of-concept, flexible NGs using exfoliated Mn3O4 membranes are made and used in self-powered paper-based devices. This research paves the way for the exploration of few-layered membranes of other centrosymmetric oxides for application as energy harvesters.

3.
ACS Appl Mater Interfaces ; 15(37): 44513-44520, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37697828

RESUMO

In this work, we decorated piezoresponsive atomically thin ZnO nanosheets on a polymer surface using additive manufacturing (three-dimensional (3D) printing) technology to demonstrate electrical-mechanical coupling phenomena. The output voltage response of the 3D-printed architecture was regulated by varying the external mechanical pressures. Additionally, we have shown energy generation by placing the 3D-printed fabric on the padded shoulder strap of a bag with a load ranging from ∼5 to ∼75 N, taking advantage of the excellent mechanical strength and flexibility of the coated 3D-printed architecture. The ZnO coating layer forms a stable interface between ZnO nanosheets and the fabric, as confirmed by combining density functional theory (DFT) and electrical measurements. This effectively improves the output performance of the 3D-printed fabric by enhancing the charge transfer at the interface. Therefore, the present work can be used to build a new infrastructure for next-generation energy harvesters capable of carrying out several structural and functional responsibilities.

4.
Phys Chem Chem Phys ; 25(26): 17143-17153, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37350266

RESUMO

The efficient monitoring and early detection of viruses may provide essential information about diseases. In this work, we have highlighted the interaction between DNA and a two-dimensional (2D) metal oxide for developing biosensors for further detection of viral infections. Spectroscopic measurements have been used to probe the efficient interactions between single-stranded DNA (ssDNA) and the 2D metal oxide and make them ideal candidates for detecting viral infections. We have also used fully atomistic molecular dynamics (MD) simulation to give a microscopic understanding of the experimentally observed ssDNA-metal oxide interaction. The adsorption of ssDNA on the inorganic surface was found to be driven by favourable enthalpy change, and 5'-guanine was identified as the interacting nucleotide base. Additionally, the in silico assessment of the conformational changes of the ssDNA chain during the adsorption process was also performed in a quantitative manner. Finally, we comment on the practical implications of these developments for sensing that could help design advanced systems for preventing virus-related pandemics.


Assuntos
Técnicas Biossensoriais , Vírus , DNA , DNA de Cadeia Simples , Técnicas Biossensoriais/métodos , Óxidos/química , Simulação de Dinâmica Molecular
5.
iScience ; 26(5): 106671, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37168568

RESUMO

The development of nanotechnology has been advancing for decades and gained acceleration in the 21st century. Two-dimensional (2D) materials are widely available, giving them a wide range of material platforms for technological study and the advancement of atomic-level applications. The design and application of 2D materials are discussed in this review. In order to evaluate the performance of 2D materials, which might lead to greater applications benefiting the electrical and electronics sectors as well as society, the future paradigm of 2D materials needs to be visualized. The development of 2D hybrid materials with better characteristics that will help industry and society at large is anticipated to result from intensive research in 2D materials. This enhanced evaluation might open new opportunities for the synthesis of 2D materials and the creation of devices that are more effective than traditional ones in various sectors of application.

6.
Chemosphere ; 333: 138951, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37196791

RESUMO

Unique interfacial properties of 2D materials make them more functional than their bulk counterparts in a catalytic application. In the present study, bulk and 2D graphitic carbon nitride nanosheet (bulk g-C3N4 and 2D-g-C3N4 NS) coated cotton fabrics and nickel foam electrode interfaces have been applied for solar light-driven self-cleaning of methyl orange (MO) dye and electrocatalytic oxygen evolution reaction (OER), respectively. Compared to bulk, 2D-g-C3N4 coated interfaces show higher surface roughness (1.094 > 0.803) and enhanced hydrophilicity (θ âˆ¼ 32° < 62° for cotton fabric and θ âˆ¼ 25° < 54° for Ni foam substrate) due to oxygen defect induction as confirmed from morphological (HR-TEM and AFM) and interfacial (XPS) characterizations. The self-remediation efficiencies for blank and bulk/2D-g-C3N4 coated cotton fabrics are estimated through colorimetric absorbance and average intensity changes. The self-cleaning efficiency for 2D-g-C3N4 NS coated cotton fabric is 87%, whereas the blank and bulk-coated fabric show 31% and 52% efficiency. Liquid Chromatography-Mass Spectrometry (LC-MS) analysis determines the reaction intermediates for MO cleaning. 2D-g-C3N4 shows lower overpotential (108 mV) and onset potential (1.30 V) vs. RHE for 10 mA cm-2 OER current density in 0.1 M KOH. Also, the decreased charge transfer resistance (RCT = 12 Ω) and lower Tafel's slope (24 mV dec-1) of 2D-g-C3N4 make it the most efficient OER catalyst over bulk-g-C3N4 and state-of-the-art material RuO2. The pseudocapacitance behavior of OER governs the kinetics of electrode-electrolyte interaction through the electrical double layer (EDL) mechanism. The 2D electrocatalyst demonstrates long-term stability (retention ∼94%) and efficacy compared to commercial electrocatalysts.


Assuntos
Compostos Azo , Oxigênio , Molhabilidade , Catálise
7.
iScience ; 26(4): 106510, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37123242

RESUMO

Developing materials for controlled hydrogen production through water splitting is one of the most promising ways to meet current energy demand. Here, we demonstrate spontaneous and green production of hydrogen at high evolution rate using gadolinium telluride (GdTe) under ambient conditions. The spent materials can be reused after melting, which regain the original activity of the pristine sample. The phase formation and reusability are supported by the thermodynamics calculations. The theoretical calculation reveals ultralow activation energy for hydrogen production using GdTe caused by charge transfer from Te to Gd. Production of highly pure and instantaneous hydrogen by GdTe could accelerate green and sustainable energy conversion technologies.

8.
3 Biotech ; 13(3): 109, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36875961

RESUMO

For many biomedical applications, high-precision CO2 detection with a rapid response is essential. Due to the superior surface-active characteristics, 2D materials are particularly crucial for electrochemical sensors. The liquid phase exfoliation method of 2D Co2Te3 production is used to achieve the electrochemical sensing of CO2. The Co2Te3 electrode performs better than other CO2 detectors in terms of linearity, low detection limit, and high sensitivity. The outstanding physical characteristics of the electrocatalyst, including its large specific surface area, quick electron transport, and presence of a surface charge, can be credited for its extraordinary electrocatalytic activity. More importantly, the suggested electrochemical sensor has great repeatability, strong stability, and outstanding selectivity. Additionally, the electrochemical sensor based on Co2Te3 could be used to monitor respiratory alkalosis. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03497-z.

9.
ACS Appl Mater Interfaces ; 14(47): 53139-53149, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36394999

RESUMO

Transition-metal tellurides (TMTs) are promising materials for "post-graphene age" nanoelectronics and energy storage applications owing to their industry-standard compatibility, high electron mobility, large spin-orbit coupling (SOC), etc. However, tellurium (Te) having a larger ionic radius (Z = 52) and broader d-bands endows TMTs with semimetallic nature, restricting their application in photonic and optoelectronic domains. In this work, we report the optical properties of the quantum-confined semiconducting phase of cobalt ditelluride (CoTe2) for the first time, exhibiting excellent two-color band photoabsorption attributes covering the UV-visible and near-infrared regions. Furthermore, novel excitonic resonances (X) of size-varying CoTe2 nanocrystals and quantum dots (QDs) are indicated by their temperature-dependent emission characteristics, which are attributed to the splitting of band edge states via confinement. On the other hand, the sudden rupture of the large-area CoTe2 nanosheets via ultrasonication incorporates Co vacancy-mediated localized trap states within the band gap, which is attributed to the superior room-temperature photoluminescence (PL) quantum yield of QDs and further corroborated using Raman analysis and atomistic density functional theory (DFT) simulations. Most interestingly, the excitonic peak of CoTe2 QDs reveals a unique positive-to-negative thermal quenching transition phenomenon, owing to the thermal activation of nonradiative surface trap states. These results introduce an exciting approach for the defect-mediated color-saturated light emission that paves the way for solution-processed telluride-based QD light-emitting diodes.

10.
Opt Lett ; 47(19): 4965-4968, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181162

RESUMO

We report a previously unreported application of the spatial self-phase modulation (SSPM) technique for recognizing solute-solvent interaction in a suspension of 2D material. Broadband optical absorption of the 2D Co2Te3 leads to a nonlinear optical (NLO) susceptibility for the monolayer, i.e., χ M o n o(3) of 1.5 ×10-9 (3.3 ×10-9) esu at 532 (632) nm, which is 1-2 orders higher than for the 2D CoTe and CoTe2. The fine structure of the SSPM patterns is analyzed to explore the foundations of the observed NLO effects. With increasing polarity of the liquid media, a change of 2D Co2Te3 from homophonous dispersion to aggregation occurs, as confirmed from in situ optical microscopy and UV-vis absorption spectroscopy. As a result, type-I (thickest outer ring) SSPM ring patterns are converted to type-II (thinnest outer ring) SSPM ring patterns. Therefore, using SSPM with a CW laser as an optical tool to identify solvent-polarity-induced aggregation in 2D materials is possible.

11.
Small ; 18(27): e2201667, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35652507

RESUMO

In this work, the synthesis and characterization of ultrathin metal oxide, called biotene, using liquid-phase exfoliation from naturally abundant biotite are demonstrated. The atomically thin biotene is used for energy harvesting using its flexoelectric response under multiple bending. The effective flexoelectric response increases due to the presence of surface charges, and the voltage increases up to ≈8 V, with a high mechano-sensitivity of 0.79 V N-1 for normal force. This flexoelectric response is further validated by density functional theory (DFT) simulations. The atomically thin biotene shows an increased response in the magnetic field and thermal heating. The synthesis of two-dimensional (2D) metal-oxide biotene suggests a wealth of future 2D-oxide material for energy generation and energy harvesting applications.


Assuntos
Glucose Oxidase , Óxidos , Silicatos de Alumínio , Combinação de Medicamentos , Compostos Ferrosos , Lactoperoxidase , Muramidase
12.
ACS Appl Mater Interfaces ; 14(26): 30343-30351, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35727691

RESUMO

Continuous health monitoring through sensitive physiological signals (using a wearable device) is crucial for the early detection of heart diseases and breathing problems. Here, we have developed a flexible hBN/cotton hybrid device that can detect minor signals such as heartbeat and breathed-out air pressure. Systematic observation of the real-time motion sensing showed a peak-to-peak voltage output of ∼1.5 V for each heart rate pulse. The as-fabricated device showed a high voltage output of up to ∼10 V upon applying a pressure of ∼3 MPa. The FTIR results and DFT calculation suggested a chemical interaction between hBN and cellulose, giving rise to flat band characteristics and partially filled σ-bonding (sp2) hybridization. The atomic-scale chemical interface between atomically thin hBN and surface functional groups present on cotton resulted in charge localization and enhanced output voltage. An hBN/cotton hybrid device can bring new insights and opportunities to develop a self-charging and health-monitoring energy-harvesting cloth.

13.
Nanoscale ; 14(21): 7788-7797, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35394476

RESUMO

Two-dimensional (2D) materials have been shown to be efficient in energy harvesting. Here, we report the use of waste heat to generate electricity via the combined piezoelectric and triboelectric properties of 2D cobalt telluride (CoTe2). The piezo-triboelectric nanogenerator (PTNG) produced an open-circuit voltage of ∼5 V under 1 N force and the effect of temperature in the range of 305-363 K shows a four-fold energy conversion efficiency improvement. The 2D piezo-tribogenerator shows excellent characteristics with a maximum voltage of ∼10 V, fast response time, and high responsivity. Density functional theory was used to gain further insights and validation of the experimental results. Our results could lead to energy harvesting approaches using 2D materials from various thermal sources and dissipating waste heat from electronic devices.

14.
iScience ; 24(12): 103532, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34917904

RESUMO

Atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDCs) have attracted significant attention owing to their prosperity in material research. The inimitable features of TMDCs triggered the emerging applications in diverse areas. In this review, we focus on the tailored and engineering of the crystal lattice of TMDCs that finally enhance the efficiency of the material properties. We highlight several preparation techniques and recent advancements in compositional engineering of TMDCs structure. We summarize different approaches for TMDCs such as doping and alloying with different materials, alloying with other 2D metals, and scrutinize the technological potential of these methods. Beyond that, we also highlight the recent significant advancement in preparing 2D quasicrystals and alloying the 2D TMDCs with MAX phases. Finally, we highlight the future perspectives for crystal engineering in TMDC materials for structure stability, machine learning concept marge with materials, and their emerging applications.

15.
Dalton Trans ; 50(40): 14062-14080, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34549221

RESUMO

Quantum dots (QDs), owing to their single atom-like electronic structure due to quantum confinement, are often referred to as artificial atoms. This unique physical property results in the diverse functions exhibited by QDs. A wide array of applications have been achieved by the surface functionalization of QDs, resulting in exceptional optical, antimicrobial, catalytic, cytotoxic and enzyme inhibition properties. Ordinarily, traditionally prepared QDs are subjected to post synthesis functionalization via a variety of methods, such as ligand exchange or covalent and non-covalent conjugation. Nevertheless, solvent toxicity, combined with the high temperature and pressure conditions during the preparation of QDs and the low product yield due to multiple steps in the functionalization, limit their overall use. This has driven scientists to investigate the development of greener, environmental friendly and cost-effective methods that can circumvent the complexity and strenuousness associated with traditional processes of bio-functionalization. In this review, a detailed analysis of the methods to bio-prepare pre-functionalized QDs, with elucidated mechanisms, and their application in the areas of catalysis and biomedical applications has been conducted. The environmental and health and safety aspects of the bio-derived QDs have been briefly discussed to unveil the future of nano-commercialization.


Assuntos
Pesquisa Biomédica , Pontos Quânticos/química , Catálise
16.
J Hazard Mater ; 418: 126383, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34329007

RESUMO

Industrialization harms the quality of water; therefore, cleaning and monitoring water sources are essential for sustainable human health and aquatic life. An increase in active surface area and porosity can result in quick and efficient cleaning activity. 3D printing can build porous architecture with controlled porosity and active surface area. Here, catalytically active ZnO nanosheets were grown on the surface of 3D printed architecture (Schwarzites and Weissmuller) with different porosity and surface area. The Weissmuller structure along with ZnO, has shown better catalytic performance due to its higher porosity (~69%) and high active surface area, compared to Schwarzites structure. Synergistic effect of adsorption and photodegradation has resulted in ~95% removal efficiency of mixed dye within 10 min by Weissmuller structure. The dye degradation efficiency was determined using colorimetric measurements with a regular smartphone for real-time quantitative investigation of dye removal efficiency. Most importantly, decorated 3D printed structures exhibit high structural stability without residuals (ZnO nanosheets) in water after performing the recycling experiment. Therefore, the decorated 3D printing structures and colorimetric detection method will offer a user-friendly versatile technique for analysis of removal efficiency of toxic components in different polluted water sources without using high-end sophisticated instruments and complicated procedures.


Assuntos
Óxido de Zinco , Humanos , Fotólise , Porosidade , Impressão Tridimensional , Água
17.
Nanoscale ; 13(5): 2946-2954, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33503086

RESUMO

Photoluminescence (PL) intensity-based non-contact optical temperature sensors are in great demand due to their non-contact nature, rapid response, sensitivity, as well as thermal and chemical stability at different environmental conditions. However, herein, reversible temperature dependent PL emission quenching properties of chemically synthesized Mn2+-doped ZnS QDs (MZQDs) have been advantageously utilized for achieving the development of a smartphone-based optical thermometer. The temperature dependent variations of PL have been studied by taking MZQDs in various forms, such as in aqueous dispersion, powder form, and a polymer-encapsulated thin film. The origin of the PL quenching of MZQD in the polymer film has been cross-verified through temperature-dependent electrical conductivity measurement and the movement of charge carriers has also been confirmed by the first-principles DFT simulation. Through thermal cycling experiments on QD-encapsulated polymer film and by utilizing an indigenously-developed Android App based on color coordinates, a novel smartphone-based colorimetric imaging method for the measurement of temperature has been demonstrated in this work. The synthesized smart QDs might be suitable candidates for temperature sensing and the colorimetric thermometer probe may be utilized in various photonics applications as a smart optical sensor for daily life applications.

18.
RSC Adv ; 11(32): 19788-19796, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35479224

RESUMO

The impact of micro and nanoplastic debris on our aquatic ecosystem is among the most prominent environmental challenges we face today. In addition, nanoplastics create significant concern for environmentalists because of their toxicity and difficulty in separation and removal. Here we report the development of a 3D printed moving bed water filter (M-3DPWF), which can perform as an efficient nanoplastic scavenger. The enhanced separation of the nanoplastics happens due to the creation of a charged filter material that traps the more surface charged nanoparticles selectively. Synthetic contaminated water from polycarbonate waste has been tested with the filter, and enhanced nanoplastic removal has been achieved. The proposed filtration mechanism of surface-charge based water cleaning is further validated using density function theory (semi-empirical) based simulation. The filter has also shown good structural and mechanical stability in both static and dynamic water conditions. The field suitability of the novel treatment system has also been confirmed using water from various sources, such as sea, river, and pond. Our results suggest that the newly developed water filter can be used for the removal of floating nanoparticles in water as a robust advanced treatment system.

19.
Biomater Sci ; 9(1): 157-166, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33084629

RESUMO

Quantum dots (QDs) as bio-detectors have been intensively explored owing to their size dependent optical properties and are still envisioned to be used in a plethora of biomedical and healthcare areas. However, the medical application of the biosensors demands the ultrasensitive detection of the analytes, which is usually limited for the conventional methods of colorimetric and fluorescence detection. The Fluorescence Resonance Energy Transfer (FRET) process, exploited by QDs, translates the close association between the analyte and the detector into optical properties and thus promises the effective detection of biomolecules. FRET based detection systems for biomolecules utilize surface-functionalized QDs which are usually modified post production using different organic groups. In this work, a novel protocol was formulated to produce bio-functionalized QDs with controlled chemical and optical characteristics. Here, we demonstrate the first-ever biological green synthesis of MoS2 QDs using Pseudomonas aeruginosa. The bio-functionalized QDs show green luminescence with a quantum yield of 42%, supporting their application as an optical sensor. These QDs are utilized to detect the pico-molar concentration of glucose, which makes them ideal for early diabetes detection and many biomedical applications. Also, the ability to sense pico-molar levels of H2O2 opens the path for its utilization in apprehending the plant signaling pathways under stress conditions.


Assuntos
Técnicas Biossensoriais , Pontos Quânticos , Transferência Ressonante de Energia de Fluorescência , Glucose , Peróxido de Hidrogênio
20.
ACS Appl Mater Interfaces ; 12(40): 45274-45280, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32898423

RESUMO

Here, we report on the fabrication of flame retardant hydrophobic cotton fabrics based on the coating with two-dimensional hexagonal boron nitride (2D hBN) nanosheets. A simple one-step solution dipping process was used to coat the fabrics by taking advantage of the strong bonding between diethylenetriamine and hBN on the cotton surface. Exposure to direct flame confirmed the improvement of the flame retardant properties of the coated cotton fabrics. In turn, removal of the flame source revealed self-extinguishing properties. Molecular dynamics simulations indicate that hBN hinders combustion by reducing the rate at which oxygen molecules reach the cotton surface. This time-saving and one-step approach for the fabrication of flame-retardant cotton fabrics offers significant advantages over other, less efficient production methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...