Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 920: 170887, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38350564

RESUMO

Co-presence of enveloped and non-enveloped viruses is common both in community circulation and in wastewater. Community surveillance of infections requires robust methods enabling simultaneous quantification of multiple viruses in wastewater. Using enveloped SARS-CoV-2 Omicron subvariants and non-enveloped norovirus (NoV) as examples, this study reports a robust method that integrates electronegative membrane (EM) concentration, viral inactivation, and RNA preservation (VIP) with efficient capture and enrichment of the viral RNA on magnetic (Mag) beads, and direct detection of RNA on the beads. This method provided improved viral recoveries of 80 ± 4 % for SARS-CoV-2 and 72 ± 5 % for Murine NoV. Duplex reverse transcription quantitative polymerase chain reaction (RT-qPCR) assays with newly designed degenerate primer-probe sets offered high PCR efficiencies (90-91 %) for NoV (GI and GII) targets and were able to detect as few as 15 copies of the viral RNA per PCR reaction. This technique, combined with duplex detection of NoV and multiplex detection of Omicron, successfully quantified NoV (GI and GII) and Omicron variants in the same sets of 94 influent wastewater samples collected from two large wastewater systems between July 2022 and June 2023. The wastewater viral RNA results showed temporal changes of both NoV and Omicron variants in the same wastewater systems and revealed an inverse relationship of their emergence. This study demonstrated the importance of a robust analytical platform for simultaneous surveillance of enveloped and non-enveloped viruses in wastewater. The ability to sensitively determine multiple viral pathogens in wastewater will advance applications of wastewater surveillance as a complementary public health tool.


Assuntos
Norovirus , Vírus , Animais , Camundongos , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias , Vírus/genética , SARS-CoV-2/genética , RNA Viral
2.
Environ Health (Wash) ; 1(3): 203-213, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37736345

RESUMO

Wastewater surveillance plays an important role in the monitoring of infections of SARS-CoV-2 at the community level. We report here the determination of SARS-CoV-2 and differentiation of its variants of concern in 294 wastewater samples collected from two major Canadian cities from May 2021 to March 2023. The overall method of analysis involved extraction of the virus and viral components using electronegative membranes, in situ stabilization and concentration of the viral RNA onto magnetic beads, and direct analysis of the viral RNA on the magnetic beads. Multiplex reverse transcription quantitative polymerase chain reaction (RT-qPCR) assays, targeting specific and naturally selected mutations in SARS-CoV-2, enabled detection and differentiation of the Alpha, Beta, Gamma, Delta, and Omicron variants. An Omicron triplex RT-qPCR assay targeting three mutations, HV 69-70 deletion, K417N, and L452R, was able to detect and differentiate the Omicron BA.1/BA.3, BA.2/XBB, and BA.4/5. This assay had efficiencies of 90-104% for all three mutation targets and a limit of detection of 28 RNA copies per reaction. Analyses of 294 wastewater samples collected over a two-year span showed the concentrations and trends of Alpha, Beta, Gamma, Delta, and Omicron variants as they emerge in two major Canadian cities participating in the wastewater surveillance program. The trends of specific variants were consistent with clinical reports for the same period. At the beginning of each wave, the corresponding variants were detectable in wastewater. For example, RNA concentrations of the BA.2 variant were as high as 104 copies per 100 mL of wastewater collected in January 2022, when approximately only 50-60 clinical cases of BA.2 infection were reported in Canada. These results show that the strategy and highly sensitive assays for the variants of concern in wastewater are potentially useful for the detection of newly emerging SARS-CoV-2 variants and other viruses for future community biomonitoring.

3.
ACS Meas Sci Au ; 3(4): 258-268, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37600458

RESUMO

The targeted screening and sequencing approaches for COVID-19 surveillance need to be adjusted to fit the evolving surveillance objectives which necessarily change over time. We present the development of variant screening assays that can be applied to new targets in a timely manner and enable multiplexing of targets for efficient implementation in the laboratory. By targeting the HV69/70 deletion for Alpha, K417N for Beta, K417T for Gamma, and HV69/70 deletion plus K417N for sub-variants BA.1, BA.3, BA.4, and BA.5 of Omicron, we achieved simultaneous detection and differentiation of Alpha, Beta, Gamma, and Omicron in a single assay. Targeting both T478K and P681R mutations enabled specific detection of the Delta variant. The multiplex assays used in combination, targeting K417N and T478K, specifically detected the Omicron sub-variant BA.2. The limits of detection for the five variants of concern were 4-16 copies of the viral RNA per reaction. Both assays achieved 100% clinical sensitivity and 100% specificity. Analyses of 377 clinical samples and 24 wastewater samples revealed the Delta variant in 100 clinical samples (nasopharyngeal and throat swab) collected in November 2021. Omicron BA.1 was detected in 79 nasopharyngeal swab samples collected in January 2022. Alpha, Beta, and Gamma variants were detected in 24 wastewater samples collected in May-June 2021 from two major cities of Alberta (Canada), and the results were consistent with the clinical cases of multiple variants reported in the community.

4.
Trends Analyt Chem ; 165: 117107, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37317683

RESUMO

Molecular detection of SARS-CoV-2 in gargle and saliva complements the standard analysis of nasopharyngeal swabs (NPS) specimens. Although gargle and saliva specimens can be readily obtained non-invasively, appropriate collection and processing of gargle and saliva specimens are critical to the accuracy and sensitivity of the overall analytical method. This review highlights challenges and recent advances in the treatment of gargle and saliva samples for subsequent analysis using reverse transcription polymerase chain reaction (RT-PCR) and isothermal amplification techniques. Important considerations include appropriate collection of gargle and saliva samples, on-site inactivation of viruses in the sample, preservation of viral RNA, extraction and concentration of viral RNA, removal of substances that inhibit nucleic acid amplification reactions, and the compatibility of sample treatment protocols with the subsequent nucleic acid amplification and detection techniques. The principles and approaches discussed in this review are applicable to molecular detection of other microbial pathogens.

5.
J Environ Sci (China) ; 130: 139-148, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37032030

RESUMO

Wastewater surveillance (WS) of SARS-CoV-2 currently requires multiple steps and suffers low recoveries and poor sensitivity. Here, we report an improved analytical method with high sensitivity and recovery to quantify SARS-CoV-2 RNA in wastewater. To improve the recovery, we concentrated SARS-CoV-2 viral particles and RNA from both the solid and aqueous phases of wastewater using an electronegative membrane (EM). The captured viral particles and RNA on the EM were incubated in our newly developed viral inactivation and RNA preservation (VIP) buffer. Subsequently, the RNA was concentrated on magnetic beads and inhibitors removed by washing. Without eluting, the RNA on the magnetic beads was directly detected using reverse transcription quantitative polymerase chain reaction (RT-qPCR). Analysis of SARS-CoV-2 pseudovirus (SARS-CoV-2 RNA in a noninfectious viral coat) spiked to wastewater samples showed an improved recovery of 80%. Analysis of 120 wastewater samples collected twice weekly between May 2021 and February 2022 from two wastewater treatment plants showed 100% positive detection, which agreed with the results independently obtained by a provincial public health laboratory. The concentrations of SARS-CoV-2 RNA in these wastewater samples ranged from 2.4×102 to 2.9×106 copies per 100 mL of wastewater. Our method's capability of detecting trace and diverse concentrations of SARS-CoV-2 in complex wastewater samples is attributed to the enhanced recovery of SARS-CoV-2 RNA and efficient removal of PCR inhibitors. The improved method for the recovery and detection of viral RNA in wastewater is important for wastewater surveillance, complementing clinical diagnostic tests for public health protection.


Assuntos
COVID-19 , RNA Viral , Humanos , Águas Residuárias , SARS-CoV-2/genética , Vigilância Epidemiológica Baseada em Águas Residuárias
6.
Trends Analyt Chem ; 161: 117000, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36937152

RESUMO

The continuing evolution of the SARS-CoV-2 virus has led to the emergence of many variants, including variants of concern (VOCs). CRISPR-Cas systems have been used to develop techniques for the detection of variants. These techniques have focused on the detection of variant-specific mutations in the spike protein gene of SARS-CoV-2. These sequences mostly carry single-nucleotide mutations and are difficult to differentiate using a single CRISPR-based assay. Here we discuss the specificity of the Cas9, Cas12, and Cas13 systems, important considerations of mutation sites, design of guide RNA, and recent progress in CRISPR-based assays for SARS-CoV-2 variants. Strategies for discriminating single-nucleotide mutations include optimizing the position of mismatches, modifying nucleotides in the guide RNA, and using two guide RNAs to recognize the specific mutation sequence and a conservative sequence. Further research is needed to confront challenges in the detection and differentiation of variants and sublineages of SARS-CoV-2 in clinical diagnostic and point-of-care applications.

8.
ACS Meas Sci Au ; 2(3): 224-232, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36785867

RESUMO

Samples of nasopharyngeal swabs (NPS) are commonly used for the detection of SARS-CoV-2 and diagnosis of COVID-19. As an alternative, self-collection of saliva and gargle samples minimizes transmission to healthcare workers and relieves the pressure of resources and healthcare personnel during the pandemic. This study aimed to develop an enhanced method enabling simultaneous viral inactivation and RNA preservation during on-site self-collection of saliva and gargle samples. Our method involves the addition of saliva or gargle samples to a newly formulated viral inactivation and RNA preservation (VIP) buffer, concentration of the viral RNA on magnetic beads, and detection of SARS-CoV-2 using reverse transcription quantitative polymerase chain reaction directly from the magnetic beads. This method has a limit of detection of 25 RNA copies per 200 µL of gargle or saliva sample and 9-111 times higher sensitivity than the viral RNA preparation kit recommended by the United States Centers for Disease Control and Prevention. The integrated method was successfully used to analyze more than 200 gargle and saliva samples, including the detection of SARS-CoV-2 in 123 gargle and saliva samples collected daily from two NPS-confirmed positive SARS-CoV-2 patients throughout the course of their infection and recovery. The VIP buffer is stable at room temperature for at least 6 months. SARS-CoV-2 RNA (65 copies/200 µL sample) is stable in the VIP buffer at room temperature for at least 3 weeks. The on-site inactivation of SARS-CoV-2 and preservation of the viral RNA enables self-collection of samples, reduces risks associated with SARS-CoV-2 transmission, and maintains the stability of the target analyte.

9.
ACS Environ Au ; 1(1): 18-31, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37579255

RESUMO

Wastewater-based epidemiology (WBE) is useful for the surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in communities, complementing clinical diagnostic testing of individuals. In this Review, we summarize recent progress and highlight remaining challenges in monitoring SARS-CoV-2 RNA in wastewater systems for community and environmental surveillance. Very low concentrations of viral particles and RNA present in the complicated wastewater and sewage sample matrix require efficient sample processing and sensitive detection. We discuss advantages and limitations of available methods for wastewater sample processing, including collection, separation, enrichment, RNA extraction, and purification. Efficient extraction of the viral RNA and removal of interfering sample matrices are critical to the subsequent reverse transcription-quantitative polymerase chain reaction (RT-qPCR) for sensitive detection of SARS-CoV-2 in wastewater. We emphasize the importance of implementing appropriate controls and method validation, which include the use of surrogate viruses for assessing extraction efficiency and normalization against measurable chemical and biological components in wastewater. Critical analysis of the published studies reveals imperative research needs for the development, validation, and standardization of robust and sensitive methods for quantitative detection of viral RNA and proteins in wastewater for WBE.

10.
Water Res ; 183: 116102, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32745672

RESUMO

We report the existence and resuscitation of viable but nonculturable (VBNC) Escherichia coli O157:H7 cells in drinking water induced by the common point-of-use disinfection treatments of boiling or microwaving. Tap water and saline samples containing E. coli O157:H7 culturable cells from a bovine isolate or two clinical isolates were boiled (1, 10, or 15 min) on a hot plate or microwaved (1.5 min) to reach boiling. No culturable E. coli O157:H7 cells were observed in the treated samples using conventional plating methods. In samples boiled for 1 or 10 min, two viability assays separately detected that 2-5.5% of the cells retained an intact membrane, while 28 to 87 cells out of the initial 108 cells retained both measurable intracellular esterase activity and membrane integrity. In samples boiled for 15 min, no viable cells were detected. The microwaved samples contained 6-10% of cells with an intact membrane, while 21 to 108 cells out of the initial 108 cells retained both membrane integrity and esterase activity. The number of viable cells retaining both metabolic activity and membrane integrity were consistent in all samples, supporting the survival of a small number of E. coli O157:H7 cells in the VBNC state after boiling for 1 or 10 min or microwaving. Furthermore, the VBNC E. coli O157:H7 cells regained growth at 37 °C in culture media containing autoinducers produced by common non-pathogenic E. coli, commonly present in the human intestine, and norepinephrine. The resuscitated cells were culturable on conventional plates and expressed mRNA encoding the E. coli O157 lipopolysaccharide gene (rfbE) and the H7 flagellin gene (fliC). This study highlights potential concerns for public health risk management of VBNC E. coli O157:H7 in drinking water disinfected by heat treatment at point-of-use. The public health significance of these concerns warrants further investigation.


Assuntos
Escherichia coli O157 , Animais , Bovinos , Contagem de Células , Contagem de Colônia Microbiana , Meios de Cultura , Humanos , Micro-Ondas , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...