Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 351, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902789

RESUMO

Spinal cord injury (SCI) often results in motor and sensory deficits, or even paralysis. Due to the role of the cascade reaction, the effect of excessive reactive oxygen species (ROS) in the early and middle stages of SCI severely damage neurons, and most antioxidants cannot consistently eliminate ROS at non-toxic doses, which leads to a huge compromise in antioxidant treatment of SCI. Selenium nanoparticles (SeNPs) have excellent ROS scavenging bioactivity, but the toxicity control problem limits the therapeutic window. Here, we propose a synergistic therapeutic strategy of SeNPs encapsulated by ZIF-8 (SeNPs@ZIF-8) to obtain synergistic ROS scavenging activity. Three different spatial structures of SeNPs@ZIF-8 were synthesized and coated with ferrostatin-1, a ferroptosis inhibitor (FSZ NPs), to achieve enhanced anti-oxidant and anti-ferroptosis activity without toxicity. FSZ NPs promoted the maintenance of mitochondrial homeostasis, thereby regulating the expression of inflammatory factors and promoting the polarization of macrophages into M2 phenotype. In addition, the FSZ NPs presented strong abilities to promote neuronal maturation and axon growth through activating the WNT4-dependent pathways, while prevented glial scar formation. The current study demonstrates the powerful and versatile bioactive functions of FSZ NPs for SCI treatment and offers inspiration for other neural injury diseases.


Assuntos
Antioxidantes , Nanopartículas , Espécies Reativas de Oxigênio , Selênio , Traumatismos da Medula Espinal , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Antioxidantes/farmacologia , Antioxidantes/química , Nanopartículas/química , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Selênio/química , Selênio/farmacologia , Neurônios/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Ratos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Células RAW 264.7 , Regeneração Nervosa/efeitos dos fármacos
2.
Artigo em Inglês | MEDLINE | ID: mdl-38819767

RESUMO

Peptides have gained tremendous popularity as biological therapeutic agents in recent years due to their favourable specificity, diversity of targets, well-established screening methods, ease of production, and lower cost. However, their poor physiological and storage stability, pharmacokinetics, and fast clearance have limited their clinical translation. Novel nanocarrier-based strategies have shown promise in overcoming these issues. In this direction, porous silicon (pSi) and mesoporous silica nanoparticles (MSNs) have been widely explored as potential carriers for the delivery of peptide therapeutics. These materials possess several advantages, including large surface areas, tunable pore sizes, and adjustable pore architectures, which make them attractive carriers for peptide delivery systems. In this review, we cover pSi and MSNs as drug carriers focusing on their use in peptide delivery. The review provides a brief overview of their fabrication, surface modification, and interesting properties that make them ideal peptide drug carriers. The review provides a systematic account of various studies that have utilised these unique porous carriers for peptide delivery describing significant in vitro and in vivo results. We have also provided a critical comparison of the two carriers in terms of their physicochemical properties and short-term and long-term biocompatibility. Lastly, we have concluded the review with our opinion of this field and identified key areas for future research for clinical translation of pSi and MSN-based peptide therapeutic formulations.

3.
J Biomol Struct Dyn ; : 1-12, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468538

RESUMO

Nucleolin, a multifaceted RNA binding domain protein is overexpressed in various cancers leading to dysfunction of several cellular signaling pathways. Quercetin, a distinctive bioactive molecule, along with its derivatives have shown exclusive physio-chemical properties which makes them appealing choices for drug development, yet their role in targeted cancer therapy is limited. Here, the RBD domain structure of Nucleolin was modeled and stabilized by MD simulations for a period of 1000 ns. Molecular docking was performed to determine the binding capability of ligands with the target. To determine the stability of the ligand inside the binding pocket of the protein, MD simulation was performed for a period of 250 ns each for Quercetin-4'-o'-Glucoside, Quercetin_9 and Quercetin complexes. Further, in-vitro studies including cytotoxicity and RT-PCR assays were performed to validate quercetin against Nucleolin. Molecular docking and MD Simulation studies suggested a potential mechanism of interaction of Quercetin-4'-o'-Glucoside, Querectin_9 and Quercetin with Nucleolin with the binding free energy of -63.653, -58.86 and -46.9 kcal/mol, respectively. Moreover, Lys 348 and Glu379 were identified as important amino acids in ligand interaction located at the RRM2 motif of Nucleolin. In-vitro studies showed significant downregulation in Nucleolin expression by 15.18 and 2.51-fold at 48h and 72h respectively in MCF-7 cells with Quercetin (IC50 = 160 µM). Our findings suggested the potential role of specific RRM motifs in interaction with natural compounds targeting Nucleolin. This could be an effective strategy in the identification of potential molecules in targeting Nucleolin which can be further explored for developing targeted therapies for breast cancer.Communicated by Ramaswamy H. Sarma.

4.
Adv Healthc Mater ; 13(9): e2302286, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38056013

RESUMO

Spinal cord injury (SCI) commonly induces nerve damage and nerve cell degeneration. In this work, a novel dental pulp stem cells (DPSCs) encapsulated thermoresponsive injectable hydrogel with sustained hydrogen sulfide (H2S) delivery is demonstrated for SCI repair. For controlled and sustained H2S gas therapy, a clinically tested H2S donor (JK) loaded octysilane functionalized mesoporous silica nanoparticles (OMSNs) are incorporated into the thermosensitive hydrogel made from Pluronic F127 (PF-127). The JK-loaded functionalized MSNs (OMSF@JK) promote preferential M2-like polarization of macrophages and neuronal differentiation of DPSCs in vitro. OMSF@JK incorporated PF-127 injectable hydrogel (PF-OMSF@JK) has a soft consistency similar to that of the human spinal cord and thus, shows a high cytocompatibility with DPSCs. The cross-sectional micromorphology of the hydrogel shows a continuous porous structure. Last, the PF-OMSF@JK composite hydrogel considerably improves the in vivo SCI regeneration in Sprague-Dawley rats through a reduction in inflammation and neuronal differentiation of the incorporated stem cells as confirmed using western blotting and immunohistochemistry. The highly encouraging in vivo results prove that this novel design on hydrogel is a promising therapy for SCI regeneration with the potential for clinical translation.


Assuntos
Hidrogéis , Traumatismos da Medula Espinal , Ratos , Animais , Humanos , Ratos Sprague-Dawley , Hidrogéis/química , Estudos Transversais , Polpa Dentária , Traumatismos da Medula Espinal/tratamento farmacológico , Células-Tronco , Medula Espinal
5.
J Nanobiotechnology ; 21(1): 488, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38105218

RESUMO

BACKGROUND: Lung cancer is a highly prevalent malignancy and has the highest mortality rate among all tumors due to lymph node metastasis. Bone marrow and umbilical cord-derived mesenchymal stem cells (MSCs) have demonstrated tumor-suppressive effects on lung cancer. This study investigated the effects of DPSC lysate on proliferation, apoptosis, migration and invasion of cancer cells were studied in vivo and in vitro. METHODS: The proliferation, apoptosis, and migration/metastasis were evaluated by cell counting kit-8 assay, Annexin-V and propidium iodide staining, and the transwell assay, respectively. The expression levels of apoptosis-, cell cycle-, migration-, and adhesion-related mRNA and proteins were measured by qRT-PCR and western blot. The level and mRNA expression of tumor markers carcino embryonic antigen (CEA), neuron-specific enolase (NSE), and squamous cell carcinoma (SCC) were measured by Enzyme-linked immunosorbent assay (ELISA) and qRT-PCR. Finally, a tumor-bearing mouse model was constructed to observe the tumor-suppressive effect of DPSC lysate after intraperitoneal injection. RESULTS: DPSC lysate decreased the viability of A549 cells and induced apoptosis in lung cancer cells. Western blot confirmed that levels of Caspase-3, Bax, and Bad were increased, and Bcl-2 protein levels were decreased in A549 cells treated with DPSC lysate. In addition, DPSC lysate inhibited the migration and invasion of A549 cells; downregulated key genes of the cell cycle, migration, and adhesion; and significantly suppressed tumor markers. Xenograft results showed that DPSC lysate inhibited tumor growth and reduced tumor weight. CONCLUSIONS: DPSC lysate inhibited proliferation, invasion, and metastasis; promoted apoptosis in lung cancer cells; and suppressed tumor growth- potentially providing a cell-based alternative therapy for lung cancer treatment.


Assuntos
Neoplasias Pulmonares , Células-Tronco Mesenquimais , Humanos , Camundongos , Animais , Neoplasias Pulmonares/patologia , Polpa Dentária/metabolismo , Polpa Dentária/patologia , Proliferação de Células , Células-Tronco Mesenquimais/metabolismo , RNA Mensageiro/farmacologia , Biomarcadores Tumorais , Apoptose , Movimento Celular , Linhagem Celular Tumoral
7.
J Mater Chem B ; 12(1): 97-111, 2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-37842835

RESUMO

3D printing of titanium (Ti) metal has potential to transform the field of personalised orthopaedics and dental implants. However, the impacts of controlled surface topographical features of 3D printed Ti implants on their interactions with the cellular microenvironment and incorporation of biological growth factors, which are critical in guiding the integration of implants with bone, are not well studied. In the present study, we explore the role of surface topological features of 3D printed Ti implants using an anodised titania nanotube (TiNT) surface layer in guiding their immune cell interaction and ability to deliver bioactive form of growth factors. TiNT layers with precisely controlled pore diameter (between 21and 130 nm) were anodically grown on 3D printed Ti surfaces to impart a nano-micro rough topology. Immune biomarker profiles at gene and protein levels show that anodised 3D Ti surfaces with smaller pores resulted in classical activation of macrophages (M1-like), while larger pores (i.e., >100 nm) promoted alternate activation of macrophages (M2-like). The in vitro bone mineralisation studies using the conditioned media from the immunomodulatory studies elucidate a clear impact of pore diameter on bone mineralisation. The tubular structure of TiNTs was utilised as a container to incorporate recombinant human bone morphogenetic protein-2 (BMP-2) in the presence of various sugar and polymeric cryoprotectants. Sucrose offered the most sustainable release of preserved BMP-2 from TiNTs. Downstream effects of released BMP-2 on macrophages as well as bone mineralisation were assessed showing bioactivity retention of the released rhBMP-2. Overall, the TiNT surface topography in combination with controlled, sustained, and local release of bioactive growth factors can potentially enhance the osseointegration outcomes of custom 3D printed Ti implants in the clinic.


Assuntos
Regeneração Óssea , Titânio , Humanos , Titânio/farmacologia , Titânio/química , Propriedades de Superfície , Impressão Tridimensional
8.
J Nanobiotechnology ; 21(1): 316, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667307

RESUMO

Spinal cord injury (SCI) is accompanied by loss of Zn2+, which is an important cause of glutamate excitotoxicity and death of local neurons as well as transplanted stem cells. Dental pulp stem cells (DPSCs) have the potential for neural differentiation and play an immunomodulatory role in the microenvironment, making them an ideal cell source for the repair of central nerve injury, including SCI. The zeolitic imidazolate framework 8 (ZIF-8) is usually used as a drug and gene delivery carrier, which can release Zn2+ sustainedly in acidic environment. However, the roles of ZIF-8 on neural differentiation of DPSCs and the effect of combined treatment on SCI have not been explored. ZIF-8-introduced DPSCs were loaded into gelatin methacryloyl (GelMA) hydrogel and in situ injected into the injured site of SCI rats. Under the effect of ZIF-8, axon number and axon length of DPSCs-differentiated neuro-like cells were significantly increased. In addition, ZIF-8 protected transplanted DPSCs from apoptosis in the damaged microenvironment. ZIF-8 promotes neural differentiation and angiogenesis of DPSCs by activating the Mitogen-activated protein kinase (MAPK) signaling pathway, which is a promising transport nanomaterial for nerve repair.


Assuntos
Estruturas Metalorgânicas , Traumatismos da Medula Espinal , Animais , Ratos , Estruturas Metalorgânicas/farmacologia , Polpa Dentária , Traumatismos da Medula Espinal/terapia , Apoptose , Diferenciação Celular
9.
J Control Release ; 363: 452-463, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37769816

RESUMO

Intranasal delivery is the most preferred route of drug administration for treatment of a range of nasal conditions including chronic rhinosinusitis (CRS), caused by an infection and inflammation of the nasal mucosa. However, localised delivery of lipophilic drugs for persistent nasal inflammation is a challenge especially with traditional topical nasal sprays. In this study, a composite thermoresponsive hydrogel is developed and tuned to obtain desired rheological and physiochemical properties suitable for intranasal administration of lipophilic drugs. The composite is comprised of drug-loaded porous silicon (pSi) particles embedded in a poloxamer 407 (P407) hydrogel matrix. Mometasone Furoate (MF), a lipophilic corticosteroid (log P of 4.11), is used as the drug, which is loaded onto pSi particles at a loading capacity of 28 wt%. The MF-loaded pSi particles (MF@pSi) are incorporated into the P407-based thermoresponsive hydrogel (HG) matrix to form the composite hydrogel (MF@pSi-HG) with a final drug content ranging between 0.1 wt% to 0.5 wt%. Rheomechanical studies indicate that the MF@pSi component exerts a minimal impact on gelation temperature or strength of the hydrogel host. The in-vitro release of the MF payload from MF@pSi-HG shows a pronounced increase in the amount of drug released over 8 h (4.5 to 21-fold) in comparison to controls consisting of pure MF incorporated in hydrogel (MF@HG), indicating an improvement in kinetic solubility of MF upon loading into pSi. Ex-vivo toxicity studies conducted on human nasal mucosal tissue show no adverse effect from exposure to either pure HG or the MF@pSi-HG formulation, even at the highest drug content of 0.5 wt%. Experiments on human nasal mucosal tissue show the MF@pSi-HG formulation deposits a quantity of MF into the tissues within 8 h that is >19 times greater than the MF@HG control (194 ± 7 µg of MF/g of tissue vs. <10 µg of MF/g of tissue, respectively).


Assuntos
Hidrogéis , Silício , Humanos , Administração Intranasal , Hidrogéis/química , Porosidade , Furoato de Mometasona , Inflamação/tratamento farmacológico
10.
ACS Nano ; 17(17): 17070-17081, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37590207

RESUMO

Metallic nanoarchitectures hold immense value as functional materials across diverse applications. However, major challenges lie in effectively engineering their hierarchical porosity while achieving scalable fabrication at low processing temperatures. Here we present a liquid-metal solvent-based method for the nanoarchitecting and transformation of solid metals. This was achieved by reacting liquid gallium with solid metals to form crystalline entities. Nanoporous features were then created by selectively removing the less noble and comparatively softer gallium from the intermetallic crystals. By controlling the crystal growth and dealloying conditions, we realized the effective tuning of the micro-/nanoscale porosities. Proof-of-concept examples were shown by applying liquid gallium to solid copper, silver, gold, palladium, and platinum, while the strategy can be extended to a wider range of metals. This metallic-solvent-based route enables low-temperature fabrication of metallic nanoarchitectures with tailored porosity. By demonstrating large-surface-area and scalable hierarchical nanoporous metals, our work addresses the pressing demand for these materials in various sectors.

11.
Biomater Sci ; 11(13): 4508-4521, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37248862

RESUMO

Nanoparticle based permeation enhancers have the potential to improve the oral delivery of biologics. Recently, solid silica nanoparticles were discovered to improve the intestinal permeability of peptides and proteins via transient opening of the gut epithelium. In this study, we have developed small-sized (∼60 nm) virus-like silica nanoparticles (VSNP) as a reversible and next generation non-toxic permeation enhancer for oral delivery of biologics. Our results show that the anionic VSNP showed a better permeation-enhancing effect than the same sized spherical Stöber silica nanoparticles (∼60 nm) by enhancing the apparent insulin permeability by 1.3-fold in the Caco-2 monolayer model and by 1.2-fold in the Caco-2/MTX-HT-29 co-culture model. In vivo experiments in healthy mice demonstrated that anionic VSNP significantly enhanced the permeation of fluorescently labelled 4 kDa dextran after oral administration compared to Stöber nanoparticles and positively charged VSNP. The results indicated that the nanoscale surface roughness is an important consideration when designing nanoparticle-based permeation enhancers. Overall, our study shows for the first time that small-sized (∼60 nm) VSNP with nanoscale surface roughness can be used as a non-toxic permeation enhancer for oral delivery of therapeutic peptides and proteins.


Assuntos
Nanopartículas , Dióxido de Silício , Humanos , Camundongos , Animais , Células CACO-2 , Dióxido de Silício/metabolismo , Mucosa Intestinal/metabolismo , Peptídeos/química , Administração Oral , Nanopartículas/química
12.
Mol Pharm ; 20(6): 2966-2977, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37216314

RESUMO

Coenzyme Q10 is a potent antioxidant that plays an important role in the maintenance of various biochemical pathways of the body and has a wide range of therapeutic applications. However, it has low aqueous solubility and oral bioavailability. Mesoporous silica nanoparticles (MCM-41 and SBA-15 types) exhibiting varying pore sizes and modified with phosphonate and amino groups were used to study the influence of pore structure and surface chemistry on the solubility, in vitro release profile, and intracellular ROS inhibition activity of coenzyme Q10. The particles were thoroughly characterized to confirm the morphology, size, pore profile, functionalization, and drug loading. Surface modification with phosphonate functional groups was found to have the strongest impact on the solubility enhancement of coenzyme Q10 when compared to that of pristine and amino-modified particles. Phosphonate-modified MCM-41 nanoparticles (i.e., MCM-41-PO3) induced significantly higher coenzyme Q10 solubility than the other particles studied. Furthermore, MCM-41-PO3 led to a twofold decrease in ROS generation in human chondrocyte cells (C28/I2), compared to the free drug in a DMSO/DMEM mixture. The results confirmed the significant contribution of small pore size and negative surface charge of MSNs that enable coenzyme Q10 confinement to allow enhanced drug solubility and antioxidant activity.


Assuntos
Antioxidantes , Nanopartículas , Humanos , Solubilidade , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio , Nanopartículas/química , Dióxido de Silício/química , Porosidade , Portadores de Fármacos/química
13.
Bioact Mater ; 24: 535-550, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36714332

RESUMO

Biomaterials have ushered the field of tissue engineering and regeneration into a new era with the development of advanced composites. Among these, the composites of inorganic materials with organic polymers present unique structural and biochemical properties equivalent to naturally occurring hybrid systems such as bones, and thus are highly desired. The last decade has witnessed a steady increase in research on such systems with the focus being on mimicking the peculiar properties of inorganic/organic combination composites in nature. In this review, we discuss the recent progress on the use of inorganic particle/polymer composites for tissue engineering and regenerative medicine. We have elaborated the advantages of inorganic particle/polymer composites over their organic particle-based composite counterparts. As the inorganic particles play a crucial role in defining the features and regenerative capacity of such composites, the review puts a special emphasis on the various types of inorganic particles used in inorganic particle/polymer composites. The inorganic particles that are covered in this review are categorised into two broad types (1) solid (e.g., calcium phosphate, hydroxyapatite, etc.) and (2) porous particles (e.g., mesoporous silica, porous silicon etc.), which are elaborated in detail with recent examples. The review also covers other new types of inorganic material (e.g., 2D inorganic materials, clays, etc.) based polymer composites for tissue engineering applications. Lastly, we provide our expert analysis and opinion of the field focusing on the limitations of the currently used inorganic/organic combination composites and the immense potential of new generation of composites that are in development.

14.
Biofabrication ; 15(2)2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36595260

RESUMO

Spray nebulization is an elegant, but relatively unstudied, technique for scaffold production. Herein we fabricated mesh scaffolds of polycaprolactone (PCL) nanofibers via spray nebulization of 8% PCL in dichloromethane (DCM) using a 55.2 kPa compressed air stream and 17 ml h-1polymer solution flow rate. Using a refined protocol, we tested the hypothesis that spray nebulization would simultaneously generate nanofibers and eliminate solvent, yielding a benign environment at the point of fiber deposition that enabled the direct deposition of nanofibers onto cell monolayers. Nanofibers were collected onto a rotating plate 20 cm from the spray nozzle, but could be collected onto any static or moving surface. Scaffolds exhibited a mean nanofiber diameter of 910 ± 190 nm, ultimate tensile strength of 2.1 ± 0.3 MPa, elastic modulus of 3.3 ± 0.4 MPa, and failure strain of 62 ± 6%.In vitro, scaffolds supported growth of human keratinocyte cell epithelial-like layers, consistent with potential utility as a dermal scaffold. Fourier-transform infrared spectroscopy demonstrated that DCM had vaporized and was undetectable in scaffolds immediately following production. Exploiting the rapid elimination of DCM during fiber production, we demonstrated that nanofibers could be directly deposited on to cell monolayers, without compromising cell viability. This is the first description of spray nebulization generating nanofibers using PCL in DCM. Using this method, it is possible to rapidly produce nanofiber scaffolds, without need for high temperatures or voltages, yielding a method that could potentially be used to deposit nanofibers onto cell cultures or wound sites.


Assuntos
Nanofibras , Humanos , Nanofibras/química , Alicerces Teciduais/química , Poliésteres/química , Polímeros , Engenharia Tecidual/métodos
15.
ACS Biomater Sci Eng ; 9(6): 2846-2856, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-33617219

RESUMO

Coenzyme-Q10 (CoQ10) is a hydrophobic benzoquinone with antioxidant and anti-inflammatory properties. It is known to reduce oxidative stress in various health conditions. However, due to the low solubility, permeability, stability, and poor oral bioavailability, the oral dose of CoQ10 required for the desired therapeutic effect is very high. In the present study, CoQ10 is encapsulated into two milk derived proteins ß-lactoglobulin and lactoferrin (BLG and LF) to produce self-assembled nanostructures of around 100-300 nm with high encapsulation efficiency (5-10% w/w). Both CoQ10-BLG and CoQ10-LF nanoparticles (NPs) significantly improved the aqueous solubility of CoQ10 60-fold and 300-fold, compared to CoQ10 alone, which hardly dissolves in water. Insight into the difference in solubility enhancement between BLG and LF was obtained using in silico modeling, which predicted that LF possesses multiple prospective CoQ10 binding sites, potentially enabling greater loading of CoQ10 on LF compared to BLG, which was predicted to be less capable of binding CoQ10. At pH 7.4, CoQ10-LF NPs showed a burst release between 30 min and 2 h then plateaued at 12 h with 30% of the total drug released over 48 h. However, pure CoQ10-BLG and pure CoQ10 had a significantly lower release rate with less than 15% and 8% cumulative release in 48 h, respectively. Most importantly, both BLG and LF NPs significantly improved CoQ10 permeability compared to the pre-dissolved drug across the Caco-2 monolayer with up to 2.5-fold apparent permeability enhancement for CoQ10-LF─further confirming the utility of this nanoencapsulation approach. Finally, in murine macrophage cells (J774A.1), CoQ10-LF NPs displayed significantly higher anti-ROS properties compared to CoQ10 (predissolved in DMSO) without affecting the cell viability. This study paves the way in improving oral bioavailability of poorly soluble drugs and nutraceuticals using milk-based self-assembled nanoparticles.


Assuntos
Antioxidantes , Nanopartículas , Humanos , Camundongos , Animais , Células CACO-2 , Estudos Prospectivos , Antioxidantes/metabolismo , Nanopartículas/química
16.
Artigo em Inglês | MEDLINE | ID: mdl-36231501

RESUMO

This article reports the synthesis of PbO doped MgZnO (PbO@MgZnO) by a co-precipitation method, followed by an ultrasonication process. PbO@MgZnO demonstrates a significant adsorption capability toward Magenta Dye (MD). The greatest adsorption capability was optimized by varying parameters such as pH, MD concentration, and adsorbent dose. The kinetics study illustrates that the adsorption of MD on PbO@MgZnO follows the pseudo-second-order. The isotherm study revealed that Langmuir is best fitted for the adsorption, but with little difference in the R2 value of Langmuir and Freundlich, the adsorption process cloud be single or multi-layer. The maximum adsorption capacity was found to be 333.33 mg/g. The negative ΔG refers to the spontaneity of MD adsorption on PbO@MgZnO. The steric parameters from statistical physics models also favor the multi-layer adsorption mechanism. As a function of solution temperature, the parameter n pattern has values of n = 0.395, 0.290, and 0.280 for 298, 308, and 318 K, respectively (i.e., all values were below 1). Therefore, horizontal molecule positioning and multiple locking mechanisms were implicated during interactions between MD and PbO@MgZnO active sites.


Assuntos
Corantes de Rosanilina , Poluentes Químicos da Água , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Física , Termodinâmica , Poluentes Químicos da Água/análise
17.
ACS Biomater Sci Eng ; 8(10): 4140-4152, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36210772

RESUMO

Porous silicon (pSi) nanoparticles are loaded with Immunoglobulin A-2 (IgA2) antibodies, and the assembly is coated with pH-responsive polymers on the basis of the Eudragit family of enteric polymers (L100, S100, and L30-D55). The temporal release of the protein from the nanocomposite formulations is quantified following an in vitro protocol simulating oral delivery: incubation in simulated gastric fluid (SGF; at pH 1.2) for 2 h, followed by a fasting state simulated intestinal fluid (FasSIF; at pH 6.8) or phosphate buffer solution (PBS; at pH 7.4). The nanocomposite formulations display a negligible release in SGF, while more than 50% of the loaded IgA2 is released in solutions at a pH of 6.8 (FasSIF) or 7.4 (PBS). Between 21 and 44% of the released IgA2 retains its functional activity. A capsule-based system is also evaluated, where the IgA2-loaded particles are packed into a gelatin capsule and the capsule is coated with either EudragitL100 or EudragitS100 polymer for a targeted release in the small intestine or the colon, respectively. The capsule-based formulations outperform polymer-coated nanoparticles in vitro, preserving 45-54% of the activity of the released protein.


Assuntos
Nanopartículas , Polímeros , Gelatina , Concentração de Íons de Hidrogênio , Imunoglobulina A , Intestino Delgado , Fosfatos , Porosidade , Silício , Solubilidade
19.
J Control Release ; 347: 561-589, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35525331

RESUMO

Dissolvable transdermal microneedles (µND) are promising micro-devices used to transport a wide selection of active compounds into the skin. To provide an effective therapeutic outcome, µNDs must pierce the human stratum corneum (~10 to 20 µm), without rupturing or bending during penetration, then release their cargo at the predetermined area and time. The ability of dissolvable µND arrays/patches to sufficiently pierce the skin is a crucial requirement, which depends on the material composition, µND geometry and fabrication techniques. This comprehensive review not only provides contemporary knowledge on the µND design approaches, but also the materials science facilitating these delivery systems and the opportunities these advanced materials can provide to enhance clinical outcomes.


Assuntos
Agulhas , Polímeros , Administração Cutânea , Sistemas de Liberação de Medicamentos/métodos , Humanos , Microinjeções/métodos , Polímeros/farmacologia , Pele
20.
Adv Drug Deliv Rev ; 186: 114293, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35483435

RESUMO

Epithelial surfaces protect exposed tissues in the body against intrusion of foreign materials, including xenobiotics, pollen and microbiota. The relative permeability of the various epithelia reflects their extent of exposure to the external environment and is in the ranking: intestinal≈ nasal ≥ bronchial ≥ tracheal > vaginal ≥ rectal > blood-perilymph barrier (otic), corneal > buccal > skin. Each epithelium also varies in their morphology, biochemistry, physiology, immunology and external fluid in line with their function. Each epithelium is also used as drug delivery sites to treat local conditions and, in some cases, for systemic delivery. The associated delivery systems have had to evolve to enable the delivery of larger drugs and biologicals, such as peptides, proteins, antibodies and biologicals and now include a range of physical, chemical, electrical, light, sound and other enhancement technologies. In addition, the quality-by-design approach to product regulation and the growth of generic products have also fostered advancement in epithelial drug delivery systems.


Assuntos
Sistemas de Liberação de Medicamentos , Pele , Feminino , Humanos , Permeabilidade , Preparações Farmacêuticas/metabolismo , Pele/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...