Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7991, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042949

RESUMO

Mitochondria contain their own genetic information and a dedicated translation system to express it. The mitochondrial ribosome is assembled from mitochondrial-encoded RNA and nuclear-encoded ribosomal proteins. Assembly is coordinated in the mitochondrial matrix by biogenesis factors that transiently associate with the maturing particle. Here, we present a structural snapshot of a large mitoribosomal subunit assembly intermediate containing 7 biogenesis factors including the GTPases GTPBP7 and GTPBP10. Our structure illustrates how GTPBP10 aids the folding of the ribosomal RNA during the biogenesis process, how this process is related to bacterial ribosome biogenesis, and why mitochondria require two biogenesis factors in contrast to only one in bacteria.


Assuntos
Ribossomos Mitocondriais , RNA , Ribossomos Mitocondriais/metabolismo , RNA/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo
2.
Science ; 380(6644): 531-536, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37141370

RESUMO

The genetic code that specifies the identity of amino acids incorporated into proteins during protein synthesis is almost universally conserved. Mitochondrial genomes feature deviations from the standard genetic code, including the reassignment of two arginine codons to stop codons. The protein required for translation termination at these noncanonical stop codons to release the newly synthesized polypeptides is not currently known. In this study, we used gene editing and ribosomal profiling in combination with cryo-electron microscopy to establish that mitochondrial release factor 1 (mtRF1) detects noncanonical stop codons in human mitochondria by a previously unknown mechanism of codon recognition. We discovered that binding of mtRF1 to the decoding center of the ribosome stabilizes a highly unusual conformation in the messenger RNA in which the ribosomal RNA participates in specific recognition of the noncanonical stop codons.


Assuntos
Códon de Terminação , Mitocôndrias , Terminação Traducional da Cadeia Peptídica , Fatores de Terminação de Peptídeos , Humanos , Microscopia Crioeletrônica , Mitocôndrias/genética , Mitocôndrias/metabolismo , Fatores de Terminação de Peptídeos/química , Conformação Proteica
3.
Sci Adv ; 7(49): eabl4064, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34851662

RESUMO

Transcriptional activator PafBC is the key regulator of the mycobacterial DNA damage response and controls around 150 genes, including genes involved in the canonical SOS response, through an unknown molecular mechanism. Using a combination of biochemistry and cryo­electron microscopy, we demonstrate that PafBC in the presence of single-stranded DNA activates transcription by reprogramming the canonical −10 and −35 promoter specificity of RNA polymerase associated with the housekeeping sigma subunit. We determine the structure of this transcription initiation complex, revealing a unique mode of promoter recognition, which we term "sigma adaptation." PafBC inserts between DNA and sigma factor to mediate recognition of hybrid promoters lacking the −35 but featuring the canonical −10 and a PafBC-specific −26 element. Sigma adaptation may constitute a more general mechanism of transcriptional control in mycobacteria.

4.
Mol Cell ; 81(12): 2566-2582.e6, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33878294

RESUMO

The mitochondrial translation system originates from a bacterial ancestor but has substantially diverged in the course of evolution. Here, we use single-particle cryo-electron microscopy (cryo-EM) as a screening tool to identify mitochondrial translation termination mechanisms and to describe them in molecular detail. We show how mitochondrial release factor 1a releases the nascent chain from the ribosome when it encounters the canonical stop codons UAA and UAG. Furthermore, we define how the peptidyl-tRNA hydrolase ICT1 acts as a rescue factor on mitoribosomes that have stalled on truncated messages to recover them for protein synthesis. Finally, we present structural models detailing the process of mitochondrial ribosome recycling to explain how a dedicated elongation factor, mitochondrial EFG2 (mtEFG2), has specialized for cooperation with the mitochondrial ribosome recycling factor to dissociate the mitoribosomal subunits at the end of the translation process.


Assuntos
Mitocôndrias/fisiologia , Ribossomos Mitocondriais/metabolismo , Terminação Traducional da Cadeia Peptídica/fisiologia , Animais , Hidrolases de Éster Carboxílico , Códon de Terminação , Microscopia Crioeletrônica/métodos , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Terminação Traducional da Cadeia Peptídica/genética , Fator G para Elongação de Peptídeos/metabolismo , Fatores de Terminação de Peptídeos/metabolismo , Biossíntese de Proteínas , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/fisiologia , Ribossomos/metabolismo
5.
Nat Rev Mol Cell Biol ; 22(5): 307-325, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33594280

RESUMO

Mitochondria are cellular organelles responsible for generation of chemical energy in the process called oxidative phosphorylation. They originate from a bacterial ancestor and maintain their own genome, which is expressed by designated, mitochondrial transcription and translation machineries that differ from those operating for nuclear gene expression. In particular, the mitochondrial protein synthesis machinery is structurally and functionally very different from that governing eukaryotic, cytosolic translation. Despite harbouring their own genetic information, mitochondria are far from being independent of the rest of the cell and, conversely, cellular fitness is closely linked to mitochondrial function. Mitochondria depend heavily on the import of nuclear-encoded proteins for gene expression and function, and hence engage in extensive inter-compartmental crosstalk to regulate their proteome. This connectivity allows mitochondria to adapt to changes in cellular conditions and also mediates responses to stress and mitochondrial dysfunction. With a focus on mammals and yeast, we review fundamental insights that have been made into the biogenesis, architecture and mechanisms of the mitochondrial translation apparatus in the past years owing to the emergence of numerous near-atomic structures and a considerable amount of biochemical work. Moreover, we discuss how cellular mitochondrial protein expression is regulated, including aspects of mRNA and tRNA maturation and stability, roles of auxiliary factors, such as translation regulators, that adapt mitochondrial translation rates, and the importance of inter-compartmental crosstalk with nuclear gene expression and cytosolic translation and how it enables integration of mitochondrial translation into the cellular context.


Assuntos
Eucariotos/genética , Mitocôndrias/genética , Biossíntese de Proteínas/genética , Transcrição Gênica , Animais , Regulação da Expressão Gênica/genética , Humanos , Fosforilação Oxidativa , RNA Mensageiro/genética , RNA de Transferência/genética
6.
EMBO J ; 39(15): e104820, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32602580

RESUMO

Mitochondria are eukaryotic organelles of bacterial origin where respiration takes place to produce cellular chemical energy. These reactions are catalyzed by the respiratory chain complexes located in the inner mitochondrial membrane. Notably, key components of the respiratory chain complexes are encoded on the mitochondrial chromosome and their expression relies on a dedicated mitochondrial translation machinery. Defects in the mitochondrial gene expression machinery lead to a variety of diseases in humans mostly affecting tissues with high energy demand such as the nervous system, the heart, or the muscles. The mitochondrial translation system has substantially diverged from its bacterial ancestor, including alterations in the mitoribosomal architecture, multiple changes to the set of translation factors and striking reductions in otherwise conserved tRNA elements. Although a number of structures of mitochondrial ribosomes from different species have been determined, our mechanistic understanding of the mitochondrial translation cycle remains largely unexplored. Here, we present two cryo-EM reconstructions of human mitochondrial elongation factor G1 bound to the mammalian mitochondrial ribosome at two different steps of the tRNA translocation reaction during translation elongation. Our structures explain the mechanism of tRNA and mRNA translocation on the mitoribosome, the regulation of mtEFG1 activity by the ribosomal GTPase-associated center, and the basis of decreased susceptibility of mtEFG1 to the commonly used antibiotic fusidic acid.


Assuntos
Proteínas Mitocondriais/química , Ribossomos Mitocondriais/química , Ribossomos Mitocondriais/ultraestrutura , Fator G para Elongação de Peptídeos/química , Biossíntese de Proteínas , RNA Mitocondrial/química , RNA de Transferência/química , Animais , Microscopia Crioeletrônica , Humanos , Membranas Mitocondriais/química , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/ultraestrutura , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Ribossomos Mitocondriais/metabolismo , Fator G para Elongação de Peptídeos/genética , Fator G para Elongação de Peptídeos/metabolismo , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Suínos
7.
Nature ; 560(7717): 263-267, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30089917

RESUMO

Mitochondria maintain their own specialized protein synthesis machinery, which in mammals is used exclusively for the synthesis of the membrane proteins responsible for oxidative phosphorylation1,2. The initiation of protein synthesis in mitochondria differs substantially from bacterial or cytosolic translation systems. Mitochondrial translation initiation lacks initiation factor 1, which is essential in all other translation systems from bacteria to mammals3,4. Furthermore, only one type of methionyl transfer RNA (tRNAMet) is used for both initiation and elongation4,5, necessitating that the initiation factor specifically recognizes the formylated version of tRNAMet (fMet-tRNAMet). Lastly, most mitochondrial mRNAs do not possess 5' leader sequences to promote mRNA binding to the ribosome2. There is currently little mechanistic insight into mammalian mitochondrial translation initiation, and it is not clear how mRNA engagement, initiator-tRNA recruitment and start-codon selection occur. Here we determine the cryo-EM structure of the complete translation initiation complex from mammalian mitochondria at 3.2 Å. We describe the function of an additional domain insertion that is present in the mammalian mitochondrial initiation factor 2 (mtIF2). By closing the decoding centre, this insertion stabilizes the binding of leaderless mRNAs and induces conformational changes in the rRNA nucleotides involved in decoding. We identify unique features of mtIF2 that are required for specific recognition of fMet-tRNAMet and regulation of its GTPase activity. Finally, we observe that the ribosomal tunnel in the initiating ribosome is blocked by insertion of the N-terminal portion of mitochondrial protein mL45, which becomes exposed as the ribosome switches to elongation mode and may have an additional role in targeting of mitochondrial ribosomes to the protein-conducting pore in the inner mitochondrial membrane.


Assuntos
Microscopia Crioeletrônica , Mamíferos , Mitocôndrias/ultraestrutura , Iniciação Traducional da Cadeia Peptídica , Animais , Códon de Iniciação/genética , Fatores de Iniciação em Eucariotos/química , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/ultraestrutura , Mitocôndrias/química , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/ultraestrutura , Modelos Moleculares , RNA Mitocondrial/química , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo , RNA Mitocondrial/ultraestrutura , RNA de Transferência de Metionina/genética , RNA de Transferência de Metionina/metabolismo , RNA de Transferência de Metionina/ultraestrutura
9.
J Mol Biol ; 428(21): 4378-4391, 2016 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-27616763

RESUMO

Escherichia coli ClpB and Saccharomyces cerevisiae Hsp104 are members of the Hsp100 family of ring-forming hexameric AAA+ chaperones that promote the solubilization of aggregated proteins and the propagation of prions. ClpB and Hsp104 cooperate with cognate Hsp70 chaperones for substrate targeting and activation of ATPase and substrate threading, achieved by transient Hsp70 binding to the repressing ClpB/Hsp104 M-domain. Fundamental differences in ATPase regulation and disaggregation mechanisms have been reported; however, these differences are raising doubts regarding the working principle of this AAA+ chaperone. In particular, unique functional plasticity was suggested to specifically enable Hsp104 to circumvent Hsp70 requirement for derepression in protein disaggregation and prion propagation. We show here that both ClpB and Hsp104 cooperation with Hsp70 is crucial for efficient protein disaggregation and, in contrast to earlier claims, cannot be circumvented by activating M-domain mutations. Activation of ClpB and Hsp104 requires two signals, relief of M-domain repression and substrate binding, leading to increased ATPase subunit coupling. These data demonstrate that ClpB and Hsp104 operate by the same basic mechanism, underscore a dominant function of Hsp70 in regulating ClpB/Hsp104 activity, and explain a plethora of in vivo studies showing a crucial function of Hsp70 in proteostasis and prion propagation.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Endopeptidase Clp , Agregados Proteicos , Mapeamento de Interação de Proteínas
10.
Front Mol Biosci ; 2: 22, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26042222

RESUMO

Unicellular and sessile organisms are particularly exposed to environmental stress such as heat shock causing accumulation and aggregation of misfolded protein species. To counteract protein aggregation, bacteria, fungi, and plants encode a bi-chaperone system composed of ATP-dependent Hsp70 and hexameric Hsp100 (ClpB/Hsp104) chaperones, which rescue aggregated proteins and provide thermotolerance to cells. The partners act in a hierarchic manner with Hsp70 chaperones coating first the surface of protein aggregates and next recruiting Hsp100 through direct physical interaction. Hsp100 proteins bind to the ATPase domain of Hsp70 via their unique M-domain. This extra domain functions as a molecular toggle allosterically controlling ATPase and threading activities of Hsp100. Interactions between neighboring M-domains and the ATPase ring keep Hsp100 in a repressed state exhibiting low ATP turnover. Breakage of intermolecular M-domain interactions and dissociation of M-domains from the ATPase ring relieves repression and allows for Hsp70 interaction. Hsp70 binding in turn stabilizes Hsp100 in the activated state and primes Hsp100 ATPase domains for high activity upon substrate interaction. Hsp70 thereby couples Hsp100 substrate binding and motor activation. Hsp100 activation presumably relies on increased subunit cooperation leading to high ATP turnover and threading power. This Hsp70-mediated activity control of Hsp100 is crucial for cell viability as permanently activated Hsp100 variants are toxic. Hsp100 activation requires simultaneous binding of multiple Hsp70 partners, restricting high Hsp100 activity to the surface of protein aggregates and ensuring Hsp100 substrate specificity.

11.
Amino Acids ; 47(4): 693-705, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25534429

RESUMO

Sodium-dependent neutral amino acid transporter B(0)AT1 (SLC6A19) and imino acid (proline) transporter SIT1 (SLC6A20) are expressed at the luminal membrane of small intestine enterocytes and proximal tubule kidney cells where they exert key functions for amino acid (re)absorption as documented by their role in Hartnup disorder and iminoglycinuria, respectively. Expression of B(0)AT1 was shown in rodent intestine to depend on the presence of the carboxypeptidase angiotensin-converting enzyme 2 (ACE2). This enzyme belongs to the renin-angiotensin system and its expression is induced by treatment with ACE-inhibitors (ACEIs) or angiotensin II AT1 receptor blockers (ARBs) in many rodent tissues. We show here in the Xenopus laevis oocyte expression system that human ACE2 also functionally interacts with SIT1. To investigate in human intestine the potential effect of ACEIs or ARBs on ACE2, we analysed intestinal biopsies taken during routine gastroduodenoscopy and ileocolonoscopy from 46 patients of which 9 were under ACEI and 13 ARB treatment. Analysis of transcript expression by real-time PCR and of proteins by immunofluorescence showed a co-localization of SIT1 and B(0)AT1 with ACE2 in the brush-border membrane of human small intestine enterocytes and a distinct axial expression pattern of the tested gene products along the intestine. Patients treated with ACEIs displayed in comparison with untreated controls increased intestinal mRNA levels of ACE2, peptide transporter PEPT1 (SLC15A1) and AA transporters B(0)AT1 and PAT1 (SLC36A1). This study unravels in human intestine the localization and distribution of intestinal transporters involved in amino acid absorption and suggests that ACEIs impact on their expression.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/genética , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Mucosa Intestinal/metabolismo , Proteínas de Membrana Transportadoras/genética , Peptidil Dipeptidase A/genética , Regulação para Cima/efeitos dos fármacos , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Enzima de Conversão de Angiotensina 2 , Animais , Expressão Gênica/efeitos dos fármacos , Humanos , Intestinos/efeitos dos fármacos , Intestinos/enzimologia , Proteínas de Membrana Transportadoras/metabolismo , Peptidil Dipeptidase A/metabolismo , Transporte Proteico/efeitos dos fármacos , Xenopus laevis
12.
Elife ; 3: e02481, 2014 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-24843029

RESUMO

The hexameric AAA+ chaperone ClpB reactivates aggregated proteins in cooperation with the Hsp70 system. Essential for disaggregation, the ClpB middle domain (MD) is a coiled-coil propeller that binds Hsp70. Although the ClpB subunit structure is known, positioning of the MD in the hexamer and its mechanism of action are unclear. We obtained electron microscopy (EM) structures of the BAP variant of ClpB that binds the protease ClpP, clearly revealing MD density on the surface of the ClpB ring. Mutant analysis and asymmetric reconstructions show that MDs adopt diverse positions in a single ClpB hexamer. Adjacent, horizontally oriented MDs form head-to-tail contacts and repress ClpB activity by preventing Hsp70 interaction. Tilting of the MD breaks this contact, allowing Hsp70 binding, and releasing the contact in adjacent subunits. Our data suggest a wavelike activation of ClpB subunits around the ring.DOI: http://dx.doi.org/10.7554/eLife.02481.001.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Agregados Proteicos , Motivos de Aminoácidos , Microscopia Crioeletrônica , Cristalografia por Raios X , Endopeptidase Clp , Imageamento Tridimensional , Simulação de Dinâmica Molecular , Proteínas Mutantes/química , Coloração Negativa , Ligação Proteica , Estrutura Terciária de Proteína
13.
FEBS Lett ; 587(6): 810-7, 2013 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-23416293

RESUMO

The Saccharomyces cerevisiae AAA+ protein Hsp104 and its Escherichia coli counterpart ClpB cooperate with Hsp70 chaperones to refold aggregated proteins and fragment prion fibrils. Hsp104/ClpB activity is regulated by interaction of the M-domain with the first ATPase domain (AAA-1), controlling ATP turnover and Hsp70 cooperation. Guanidinium hydrochloride (GdnHCl) inhibits Hsp104/ClpB activity, leading to prion curing. We show that GdnHCl binding exerts dual effects on Hsp104/ClpB. First, GdnHCl strengthens M-domain/AAA-1 interaction, stabilizing Hsp104/ClpB in a repressed conformation and abrogating Hsp70 cooperation. Second, GdnHCl inhibits continuous ATP turnover by AAA-1. These findings provide the mechanistic basis for prion curing by GdnHCl.


Assuntos
Proteínas de Escherichia coli/antagonistas & inibidores , Escherichia coli/efeitos dos fármacos , Guanidina/farmacologia , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico/antagonistas & inibidores , Príons/química , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Saccharomyces cerevisiae/efeitos dos fármacos , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Endopeptidase Clp , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Genes Reporter , Guanidina/química , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Luciferases/genética , Microscopia de Fluorescência , Príons/metabolismo , Ligação Proteica , Desnaturação Proteica , Domínios e Motivos de Interação entre Proteínas , Redobramento de Proteína , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Nat Struct Mol Biol ; 19(12): 1347-55, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23160352

RESUMO

Bacteria, fungi and plants rescue aggregated proteins using a powerful bichaperone system composed of an Hsp70 chaperone and an Hsp100 AAA+ disaggregase. In Escherichia coli, the Hsp70 chaperone DnaK binds aggregates and targets the disaggregase ClpB to the substrate. ClpB hexamers use ATP to thread substrate polypeptides through the central pore, driving disaggregation. How ClpB finds DnaK and regulates threading remains unclear. To dissect the disaggregation mechanism, we separated these steps using primarily chimeric ClpB-ClpV constructs that directly recognize alternative substrates, thereby obviating DnaK involvement. We show that ClpB has low intrinsic disaggregation activity that is normally repressed by the ClpB middle (M) domain. In the presence of aggregate, DnaK directly binds M-domain motif 2, increasing ClpB ATPase activity to unleash high ClpB threading power. Our results uncover a new function for Hsp70: the coupling of substrate targeting to AAA+ chaperone activation at aggregate surfaces.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Ligação Proteica
15.
Nat Struct Mol Biol ; 19(12): 1338-46, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23160353

RESUMO

The ring-forming AAA+ protein ClpB cooperates with the DnaK chaperone system to refold aggregated proteins in Escherichia coli. The M domain, a ClpB-specific coiled-coil structure with two wings, motif 1 and motif 2, is essential to disaggregation, but the positioning and mechanistic role of M domains in ClpB hexamers remain unresolved. We show that M domains nestle at the ClpB ring surface, with both M-domain motifs contacting the first ATPase domain (AAA-1). Both wings contribute to maintaining a repressed ClpB activity state. Motif 2 docks intramolecularly to AAA-1 to regulate ClpB unfolding power, and motif 1 contacts a neighboring AAA-1 domain. Mutations that stabilize motif 2 docking repress ClpB, whereas destabilization leads to derepressed ClpB activity with greater unfolding power that is toxic in vivo. Our results underline the vital nature of tight ClpB activity control and elucidate a regulated M-domain toggle control mechanism.


Assuntos
Proteínas de Escherichia coli/fisiologia , Proteínas de Choque Térmico/fisiologia , Sequência de Aminoácidos , Endopeptidase Clp , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Chaperonas Moleculares , Dados de Sequência Molecular , Mutação , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...