Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 11: 1292027, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38093816

RESUMO

The global cost-benefit analysis of pesticide use during the last 30 years has been characterized by a significant increase during the period from 1990 to 2007 followed by a decline. This observation can be attributed to several factors including, but not limited to, pest resistance, lack of novelty with respect to modes of action or classes of chemistry, and regulatory action. Due to current and projected increases of the global population, it is evident that the demand for food, and consequently, the usage of pesticides to improve yields will increase. Addressing these challenges and needs while promoting new crop protection agents through an increasingly stringent regulatory landscape requires the development and integration of infrastructures for innovative, cost- and time-effective discovery and development of novel and sustainable molecules. Significant advances in artificial intelligence (AI) and cheminformatics over the last two decades have improved the decision-making power of research scientists in the discovery of bioactive molecules. AI- and cheminformatics-driven molecule discovery offers the opportunity of moving experiments from the greenhouse to a virtual environment where thousands to billions of molecules can be investigated at a rapid pace, providing unbiased hypothesis for lead generation, optimization, and effective suggestions for compound synthesis and testing. To date, this is illustrated to a far lesser extent in the publicly available agrochemical research literature compared to drug discovery. In this review, we provide an overview of the crop protection discovery pipeline and how traditional, cheminformatics, and AI technologies can help to address the needs and challenges of agrochemical discovery towards rapidly developing novel and more sustainable products.

2.
Front Plant Sci ; 11: 1284, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973843

RESUMO

Wild soybean species (Glycine soja Siebold & Zucc.) comprise a unique resource to widen the genetic base of cultivated soybean [Glycine max (L.) Merr.] for various agronomic traits. An inter-specific mapping population derived from a cross of cultivar Williams 82 and PI 483460B, a wild soybean accession, was utilized for genetic characterization of root architecture traits. The objectives of this study were to identify and characterize quantitative trait loci (QTL) for seedling shoot and root architecture traits, as well as to determine additive/epistatic interaction effects of identified QTLs. A total of 16,469 single nucleotide polymorphisms (SNPs) developed for the Illumina beadchip genotyping platform were used to construct a high resolution genetic linkage map. Among the 11 putative QTLs identified, two significant QTLs on chromosome 7 were determined to be associated with total root length (RL) and root surface area (RSA) with favorable alleles from the wild soybean parent. These seedling root traits, RL (BARC_020495_04641 ~ BARC_023101_03769) and RSA (SNP02285 ~ SNP18129_Magellan), could be potential targets for introgression into cultivated soybean background to improve both tap and lateral roots. The RL QTL region harbors four candidate genes with higher expression in root tissues: Phosphofructokinase (Glyma.07g126400), Snf7 protein (Glyma.07g127300), unknown functional gene (Glyma.07g127900), and Leucine Rich-Repeat protein (Glyma.07g127100). The novel alleles inherited from the wild soybean accession could be used as molecular markers to improve root system architecture and productivity in elite soybean lines.

3.
Plant J ; 101(1): 101-111, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31487408

RESUMO

Type C cytoplasmic male sterility (CMS-C) is the most commonly used form of CMS in maize hybrid seed production. Restorer of fertility 4 (Rf4), the major fertility restorer gene of CMS-C, is located on chromosome 8S. To positionally clone Rf4, a large F3 population derived from a cross between a non-restorer and restorer (n = 5104) was screened for recombinants and then phenotyped for tassel fertility, resulting in a final map-based cloning interval of 12 kb. Within this 12-kb interval, the only likely candidate for Rf4 was GRMZM2G021276, a basic helix-loop-helix (bHLH) transcription factor with tassel-specific expression. The Rf4 gene product contains a nuclear localization signal and is likely to not interact directly with the mitochondria. Sequence analysis of Rf4 revealed four encoded amino acid substitutions between restoring and non-restoring inbreds, however only one substitution, F187Y, was within the highly conserved bHLH domain. The hypothesis that Rf4 restoration is altered by a single amino acid was tested by using clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR associated protein 9 (Cas9) homology directed repair (HDR) to create isogenic lines that varied for the F187Y substitution. In a population of these CRISPR-Cas9 edited plants (n = 780) that was phenotyped for tassel fertility, plants containing F187 were completely fertile, indicating fertility restoration, and plants containing Y187 were sterile, indicating lack of fertility restoration. Structural modeling shows that this amino acid residue 187 is located within the four helix bundle core, a critical region for stabilizing dimer conformation and affecting interaction partner selection.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Infertilidade das Plantas/fisiologia , Fatores de Transcrição/metabolismo , Zea mays/metabolismo , Substituição de Aminoácidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Infertilidade das Plantas/genética , Fatores de Transcrição/genética , Zea mays/genética
4.
Genomics ; 111(5): 1018-1025, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30026106

RESUMO

Small RNAs (sRNAs) are short, non-coding, 17-24 nucleotides long RNA molecules that play vital roles in regulating gene expression in every known organism investigated to date including cotton (Gossypium ssp.). These tiny RNA molecules target diverse categories of genes from different bioliogical and metabolic processes and have been reported in the three domains of life. Small RNAs, including miRNAs, are involved in ovule and fiber development, biotic and abiotic stresses, fertility, and other biochemical processes in cotton species. Also, sRNAs are the critical components in RNA interference pathway. In this article, we have reviewed the research efforts related to the isolation and characterization of miRNAs using molecular and genomic approaches. The progress made in understanding the functional roles of miRNAs in regulation, alteration, and inactivation of fundamental plant processes and traits of importance in cotton are presented here.


Assuntos
Produtos Agrícolas/genética , Gossypium/genética , MicroRNAs/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Gossypium/crescimento & desenvolvimento , MicroRNAs/metabolismo , Melhoramento Vegetal/métodos , Característica Quantitativa Herdável
5.
Front Plant Sci ; 9: 886, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30002665

RESUMO

Global food demand is expected to nearly double by 2050 due to an increase in the world's population. The Green Revolution has played a key role in the past century by increasing agricultural productivity worldwide, however, limited availability and continued depletion of natural resources such as arable land and water will continue to pose a serious challenge for global food security in the coming decades. High yielding varieties with proven tolerance to biotic and abiotic stresses, superior nutritional profiles, and the ability to adapt to the changing environment are needed for continued agricultural sustainability. The narrow genetic base of modern cultivars is becoming a major bottleneck for crop improvement efforts and, therefore, the use of crop wild relatives (CWRs) is a promising approach to enhance genetic diversity of cultivated crops. This article provides a review of the efforts to date on the exploration of CWRs as a source of tolerance to multiple biotic and abiotic stresses in four global crops of importance; maize, rice, cotton, and soybean. In addition to the overview of the repertoire and geographical spread of CWRs in each of the respective crops, we have provided a comprehensive discussion on the morphological and/or genetic basis of the traits along with some examples, when available, of the research in the transfer of traits from CWRs to cultivated varieties. The emergence of modern molecular and genomic technologies has not only accelerated the pace of dissecting the genetics underlying the traits found in CWRs, but also enabled rapid and efficient trait transfer and genome manipulation. The potential and promise of these technologies has also been highlighted in this review.

6.
Plant Biotechnol J ; 16(11): 1939-1953, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29618164

RESUMO

The cultivated [Glycine max (L) Merr.] and wild [Glycine soja Siebold & Zucc.] soybean species comprise wide variation in seed composition traits. Compared to wild soybean, cultivated soybean contains low protein, high oil, and high sucrose. In this study, an interspecific population was derived from a cross between G. max (Williams 82) and G. soja (PI 483460B). This recombinant inbred line (RIL) population of 188 lines was sequenced at 0.3× depth. Based on 91 342 single nucleotide polymorphisms (SNPs), recombination events in RILs were defined, and a high-resolution bin map was developed (4070 bins). In addition to bin mapping, quantitative trait loci (QTL) analysis for protein, oil, and sucrose was performed using 3343 polymorphic SNPs (3K-SNP), derived from Illumina Infinium BeadChip sequencing platform. The QTL regions from both platforms were compared, and a significant concordance was observed between bin and 3K-SNP markers. Importantly, the bin map derived from next-generation sequencing technology enhanced mapping resolution (from 1325 to 50 Kb). A total of five, nine, and four QTLs were identified for protein, oil, and sucrose content, respectively, and some of the QTLs coincided with soybean domestication-related genomic loci. The major QTL for protein and oil were mapped on Chr. 20 (qPro_20) and suggested negative correlation between oil and protein. In terms of sucrose content, a novel and major QTL were identified on Chr. 8 (qSuc_08) and harbours putative genes involved in sugar transport. In addition, genome-wide association using 91 342 SNPs confirmed the genomic loci derived from QTL mapping. A QTL-based haplotype using whole-genome resequencing of 106 diverse soybean lines identified unique allelic variation in wild soybean that could be utilized to widen the genetic base in cultivated soybean.


Assuntos
Mapeamento Cromossômico , Genoma de Planta/genética , Glycine max/genética , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Óleo de Soja/metabolismo , Sacarose/metabolismo , Mapeamento Cromossômico/métodos , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas , Análise de Sequência de DNA , Glycine max/metabolismo
7.
Front Plant Sci ; 7: 202, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26941765

RESUMO

RNA interference (RNAi), is a powerful new technology in the discovery of genetic sequence functions, and has become a valuable tool for functional genomics of cotton (Gossypium sp.). The rapid adoption of RNAi has replaced previous antisense technology. RNAi has aided in the discovery of function and biological roles of many key cotton genes involved in fiber development, fertility and somatic embryogenesis, resistance to important biotic and abiotic stresses, and oil and seed quality improvements as well as the key agronomic traits including yield and maturity. Here, we have comparatively reviewed seminal research efforts in previously used antisense approaches and currently applied breakthrough RNAi studies in cotton, analyzing developed RNAi methodologies, achievements, limitations, and future needs in functional characterizations of cotton genes. We also highlighted needed efforts in the development of RNAi-based cotton cultivars, and their safety and risk assessment, small and large-scale field trials, and commercialization.

8.
PLoS One ; 11(2): e0149515, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26908260

RESUMO

Demand for the commercial use of genetically modified (GM) crops has been increasing in light of the projected growth of world population to nine billion by 2050. A prerequisite of paramount importance for regulatory submissions is the rigorous safety assessment of GM crops. One of the components of safety assessment is molecular characterization at DNA level which helps to determine the copy number, integrity and stability of a transgene; characterize the integration site within a host genome; and confirm the absence of vector DNA. Historically, molecular characterization has been carried out using Southern blot analysis coupled with Sanger sequencing. While this is a robust approach to characterize the transgenic crops, it is both time- and resource-consuming. The emergence of next-generation sequencing (NGS) technologies has provided highly sensitive and cost- and labor-effective alternative for molecular characterization compared to traditional Southern blot analysis. Herein, we have demonstrated the successful application of both whole genome sequencing and target capture sequencing approaches for the characterization of single and stacked transgenic events and compared the results and inferences with traditional method with respect to key criteria required for regulatory submissions.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Plantas Geneticamente Modificadas/genética , Transgenes , Southern Blotting , Dosagem de Genes , Genômica/métodos , Melhoramento Vegetal , Glycine max/genética
9.
BMC Genomics ; 16: 916, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26555731

RESUMO

BACKGROUND: Gray Leaf Spot (GLS causal agents Cercospora zeae-maydis and Cercospora zeina) is one of the most important foliar diseases of maize in all areas where the crop is being cultivated. Although in the USA the situation with GLS severity is not as critical as in sub-Saharan Africa or Brazil, the evidence of climate change, increasing corn monoculture as well as the narrow genetic base of North American resistant germplasm can turn the disease into a serious threat to US corn production. The development of GLS resistant cultivars is one way to control the disease. In this study we combined the high QTL detection power of genetic linkage mapping with the high resolution power of genome-wide association study (GWAS) to precisely dissect QTL controlling GLS resistance and identify closely linked molecular markers for robust marker-assisted selection and trait introgression. RESULTS: Using genetic linkage analysis with a small bi-parental mapping population, we identified four GLS resistance QTL on chromosomes 1, 6, 7, and 8, which were validated by GWAS. GWAS enabled us to dramatically increase the resolution within the confidence intervals of the above-mentioned QTL. Particularly, GWAS revealed that QTLGLSchr8, detected by genetic linkage mapping as a locus with major effect, was likely represented by two QTL with smaller effects. Conducted in parallel, GWAS of days-to-silking demonstrated the co-localization of flowering time QTL with GLS resistance QTL on chromosome 7 indicating that either QTLGLSchr7 is a flowering time QTL or it is a GLS resistance QTL that co-segregates with the latter. As a result, this genetic linkage - GWAS hybrid mapping system enabled us to identify one novel GLS resistance QTL (QTLGLSchr8a) and confirm with more refined positions four more previously mapped QTL (QTLGLSchr1, QTLGLSchr6, QTLGLSchr7, and QTLGLSchr8b). Through the novel Single Donor vs. Elite Panel method we were able to identify within QTL confidence intervals SNP markers that would be suitable for marker-assisted selection of gray leaf spot resistant genotypes containing the above-mentioned GLS resistance QTL. CONCLUSION: The application of a genetic linkage - GWAS hybrid mapping system enabled us to dramatically increase the resolution within the confidence interval of GLS resistance QTL by-passing labor- and time-intensive fine mapping. This method appears to have a great potential to accelerate the pace of QTL mapping projects. It is universal and can be used in the QTL mapping projects in any crops.


Assuntos
Mapeamento Cromossômico , Resistência à Doença/genética , Ligação Genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Zea mays/genética , Cromossomos de Plantas , Marcadores Genéticos , Genoma de Planta , Estudo de Associação Genômica Ampla , Fenótipo , Polimorfismo de Nucleotídeo Único
10.
Food Chem Toxicol ; 81: 141-142, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25929743

RESUMO

International guidance on assessing amino-acid sequences for allergenic cross reactivity, such as that provided by Codex, relies on percent amino-acid identity across local alignments. Previous work has shown this approach to exhibit poor selectivity for true allergen cross-reactivity. Here we provide a hypothetical example illustrating that this approach is also not necessarily conservative in detecting high similarity across amino acid sequences, and thus, is not necessarily conservative in detecting potential allergenic cross reactivity among proteins. It is recommended that an established local-alignment bioinformatic tool like FASTA be used in conjunction with statistical measures of similarity to detect the risk of a protein cross-reacting with an allergen.


Assuntos
Alérgenos/química , Aminoácidos/química , Sequência de Aminoácidos , Biologia Computacional , Reações Cruzadas , Dados de Sequência Molecular , Alinhamento de Sequência
11.
Toxicol Rep ; 2: 1145-1148, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-28962455

RESUMO

In the context of regulatory assessment of transgenic proteins for potential allergenicity, a previous investigation demonstrated that a 1:1 FASTA comparison using an E-value of 1.0E-09 as a criterion is superior to the conventional FASTA search (using the whole sequence as a query) for >35% identity over 80 amino acids, but with improved specificity. A further study, using groups of known cross-reactive peanut allergens, indicates the sensitivity of this approach is superior to the conventional FASTA search and equivalent to 80-mer sliding window FASTA search recommended by WHO/FAO. Specifically, the 1:1 FASTA approach eliminated the technical issues resulting from lack of identification of short query sequences with high identity to known allergens, or high identity over short amino acid stretches, and different E-value settings when searching for >35% identity over 80aa. Based on the performance of this simple application of existing bioinformatics tools, and its ease of implementation and interpretation in the context of a regulatory assessment, we advocate that adoption of this 1:1 FASTA approach as a supplement to the FAO/WHO/ CODEX criterion (>35% identity over 80aa) formulated 13 years ago. Adoption of this approach eliminates many biologically irrelevant homology hits generated by the FAO/WHO/CODEX criterion and improves the safety assessment of GM crops.

12.
Food Chem Toxicol ; 71: 142-8, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24953553

RESUMO

To address the high false positive rate using >35% identity over 80 amino acids in the regulatory assessment of transgenic proteins for potential allergenicity and the change of E-value with database size, the Needleman-Wunsch global sequence alignment and a one-to-one (1:1) local FASTA search (one protein in the target database at a time) using FASTA were evaluated by comparing proteins randomly selected from Arabidopsis, rice, corn, and soybean with known allergens in a peer-reviewed allergen database (http://www.allergenonline.org/). Compared with the approach of searching >35%/80aa+, the false positive rate measured by specificity rate for identification of true allergens was reduced by a 1:1 global sequence alignment with a cut-off threshold of ≧30% identity and a 1:1 FASTA local alignment with a cut-off E-value of ≦1.0E-09 while maintaining the same sensitivity. Hence, a 1:1 sequence comparison, especially using the FASTA local alignment tool with a biological relevant E-value of 1.0E-09 as a threshold, is recommended for the regulatory assessment of sequence identities between transgenic proteins in food crops and known allergens.


Assuntos
Alérgenos/química , Produtos Agrícolas/química , Proteínas de Plantas/química , Homologia de Sequência de Aminoácidos , Algoritmos , Alérgenos/imunologia , Produtos Agrícolas/imunologia , Proteínas de Plantas/imunologia , Plantas Geneticamente Modificadas
13.
Theor Appl Genet ; 127(7): 1537-47, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24802074

RESUMO

KEY MESSAGE: We identified a G-nucleotide insertion in a maize FatB responsible for reducing saturated fatty acids through QTL mapping and map-based cloning and developed an allele-specific DNA marker for molecular breeding. Vegetable oils with reduced saturated fatty acids have signficant health benefits. SRS72NE, a Dow AgroSciences proprietory maize inbred line, was found to contain signficantly reduced levels of palmitic acid and total saturated fatty acids in seed oil when compared to other common inbreds. Using F2 and F3 populations derived from a cross between SRS72NE and a normal inbred SLN74, we have demonstrated that the reduced saturated fatty acid phenotype in SRS72NE is controlled by a single QTL on chromosome 9 that explains 79.1 % of palmitic acid and 79.6 % total saturated fatty acid variations. The QTL was mapped to an interval of 105 kb that contains one single gene, a type B fatty acyl-ACP thioesterase (ZmFatB; GRMZM5G829544). ZmFatB alleles from SRS72NE and common inbreds were cloned and sequenced. SRS72NE fatb allele contains a single nucleotide (G) insertion in the 6th exon, which creates a premature stop codon 22 base pairs down stream. As a result, ZmFatB protein from SRS72NE is predicted to contain eight altered and 90 deleted amino acids at its C-terminus. Because the affected region is part of the conserved acyl-ACP thioesterase catalytic domain, the truncated ZmFatB in SRS72NE is likely non-functional. We also show that fatb RNA level in SRS72NE is reduced by 4.4-fold when compared to the normal allele SNL74. A high throughput DNA assay capable of differentiating the normal and reduced saturate fatty acid alleles has been developed and can be used for accelerated molecular breeding.


Assuntos
Óleo de Milho/química , Ácidos Graxos/análise , Regulação da Expressão Gênica de Plantas , Sementes/química , Zea mays/genética , Alelos , Sequência de Aminoácidos , Cruzamento , Mapeamento Cromossômico , Clonagem Molecular , Óleo de Milho/genética , DNA de Plantas/genética , Genótipo , Dados de Sequência Molecular , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Sementes/genética , Análise de Sequência de DNA , Tioléster Hidrolases/análise , Zea mays/química
14.
Plant Mol Biol ; 80(3): 289-97, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22847075

RESUMO

Maize brown midrib1 (bm1) mutant plants have reduced lignin content and offer significant advantages when used in silage and biofuel applications. Cinnamyl alcohol dehydrogenase (CAD) catalyzes the conversion of hydroxycinnamyl aldehydes to monolignols, a key step in lignin biosynthesis. Maize CAD2 has been implicated as the underlying gene for bm1 phenotypes since bm1 plants have reduced CAD activity and lower CAD2 transcript level. Here, we describe a Dow AgroSciences maize bm1 mutant (bm1-das1) that contains a 3,444-bp transposon insertion in the first intron of CAD2 gene. As a result of chimeric RNA splicing, cad2 mRNA from bm1-das1 contains a 409-bp insert between its 1st and 2nd exons. This insertion creates a premature stop codon and is predicted to result in a truncated protein of 48 amino acids (AA), compared to 367 AA for the wild type (WT) CAD2. We have also sequenced cad2 from the reference allele bm1-ref in 515D bm1 stock and showed that it contains a two-nucleotide (AC) insertion in the 3rd exon, which is predicted to result in a truncated protein of 147 AA. The levels of cad2 mRNA in the midribs of bm1-das1 and bm1-ref are reduced by 91 and 86 % respectively, leading to reductions in total lignin contents by 24 and 30 %. Taken together, our data show that mutations in maize CAD2 are responsible for maize bm1 phenotypes. Based on specific changes in bm1-das1 and bm1-ref, high throughput TaqMan and KBioscience's allele specific PCR assays capable of differentiating mutant and WT alleles have been developed to accelerate bm1 molecular breeding.


Assuntos
Oxirredutases do Álcool/genética , Regulação Enzimológica da Expressão Gênica/genética , Lignina/metabolismo , Zea mays/enzimologia , Zea mays/genética , Oxirredutases do Álcool/metabolismo , Alelos , Sequência de Bases , Clonagem Molecular , Códon sem Sentido , DNA de Plantas/química , DNA de Plantas/genética , Mutação da Fase de Leitura , Regulação da Expressão Gênica de Plantas , Lignina/análise , Dados de Sequência Molecular , Mutagênese Insercional , Mutação , Fenótipo , Folhas de Planta/química , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/química , Caules de Planta/enzimologia , Caules de Planta/genética , RNA Mensageiro/genética , RNA de Plantas/genética , Zea mays/química
15.
G3 (Bethesda) ; 2(1): 43-58, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22384381

RESUMO

Genetic linkage maps play fundamental roles in understanding genome structure, explaining genome formation events during evolution, and discovering the genetic bases of important traits. A high-density cotton (Gossypium spp.) genetic map was developed using representative sets of simple sequence repeat (SSR) and the first public set of single nucleotide polymorphism (SNP) markers to genotype 186 recombinant inbred lines (RILs) derived from an interspecific cross between Gossypium hirsutum L. (TM-1) and G. barbadense L. (3-79). The genetic map comprised 2072 loci (1825 SSRs and 247 SNPs) and covered 3380 centiMorgan (cM) of the cotton genome (AD) with an average marker interval of 1.63 cM. The allotetraploid cotton genome produced equivalent recombination frequencies in its two subgenomes (At and Dt). Of the 2072 loci, 1138 (54.9%) were mapped to 13 At-subgenome chromosomes, covering 1726.8 cM (51.1%), and 934 (45.1%) mapped to 13 Dt-subgenome chromosomes, covering 1653.1 cM (48.9%). The genetically smallest homeologous chromosome pair was Chr. 04 (A04) and 22 (D04), and the largest was Chr. 05 (A05) and 19 (D05). Duplicate loci between and within homeologous chromosomes were identified that facilitate investigations of chromosome translocations. The map augments evidence of reciprocal rearrangement between ancestral forms of Chr. 02 and 03 versus segmental homeologs 14 and 17 as centromeric regions show homeologous between Chr. 02 (A02) and 17 (D02), as well as between Chr. 03 (A03) and 14 (D03). This research represents an important foundation for studies on polyploid cottons, including germplasm characterization, gene discovery, and genome sequence assembly.

16.
Int J Plant Genomics ; 2012: 728398, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23316221

RESUMO

The use of molecular markers has revolutionized the pace and precision of plant genetic analysis which in turn facilitated the implementation of molecular breeding of crops. The last three decades have seen tremendous advances in the evolution of marker systems and the respective detection platforms. Markers based on single nucleotide polymorphisms (SNPs) have rapidly gained the center stage of molecular genetics during the recent years due to their abundance in the genomes and their amenability for high-throughput detection formats and platforms. Computational approaches dominate SNP discovery methods due to the ever-increasing sequence information in public databases; however, complex genomes pose special challenges in the identification of informative SNPs warranting alternative strategies in those crops. Many genotyping platforms and chemistries have become available making the use of SNPs even more attractive and efficient. This paper provides a review of historical and current efforts in the development, validation, and application of SNP markers in QTL/gene discovery and plant breeding by discussing key experimental strategies and cases exemplifying their impact.

17.
Genome ; 53(10): 840-7, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20962891

RESUMO

The availability of a wider range of promoters for regulated expression in valuable transgenic crops would benefit functional genomics studies and current biotechnology programs aimed at improved productivity. Polymerase chain reaction (PCR)-based genome walking techniques are commonly used to isolate promoters or 5' flanking genomic regions adjacent to known cDNA sequences in genomes that are not yet completely sequenced. However, these techniques are problematic when applied directly to DNA isolated from crops with highly complex and large genomes. An adaptor ligation-mediated PCR-based BAC genome walking method is described here for the efficient isolation of promoters of multigene family members, such as the putative defense and fiber biosynthesis DIRIGENT genes that are abundant in the stem of sugarcane, a species with a highly polyploid genome. The advantage of this method is the efficient and specific amplification of the target promoter using BAC genomic DNA as template for the adaptor ligation-mediated PCR walking.


Assuntos
Passeio de Cromossomo/métodos , Cromossomos Artificiais Bacterianos/genética , Genoma de Planta , Poliploidia , Regiões Promotoras Genéticas , Saccharum/genética , Algoritmos , Mapeamento Cromossômico/métodos , Clonagem Molecular/métodos , DNA de Plantas/análise , DNA de Plantas/genética , Família Multigênica/genética , Reação em Cadeia da Polimerase/métodos , Regiões Promotoras Genéticas/genética
18.
Theor Appl Genet ; 121(3): 577-88, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20401646

RESUMO

The duplicated and the highly repetitive nature of the maize genome has historically impeded the development of true single nucleotide polymorphism (SNP) markers in this crop. Recent advances in genome complexity reduction methods coupled with sequencing-by-synthesis technologies permit the implementation of efficient genome-wide SNP discovery in maize. In this study, we have applied Complexity Reduction of Polymorphic Sequences technology (Keygene N.V., Wageningen, The Netherlands) for the identification of informative SNPs between two genetically distinct maize inbred lines of North and South American origins. This approach resulted in the discovery of 1,123 putative SNPs representing low and single copy loci. In silico and experimental (Illumina GoldenGate (GG) assay) validation of putative SNPs resulted in mapping of 604 markers, out of which 188 SNPs represented 43 haplotype blocks distributed across all ten chromosomes. We have determined and clearly stated a specific combination of stringent criteria (>0.3 minor allele frequency, >0.8 GenTrainScore and >0.5 Chi_test100 score) necessary for the identification of highly polymorphic and genetically stable SNP markers. Due to these criteria, we identified a subset of 120 high-quality SNP markers to leverage in GG assay-based marker-assisted selection projects. A total of 32 high-quality SNPs represented 21 haplotypes out of 43 identified in this study. The information on the selection criteria of highly polymorphic SNPs in a complex genome such as maize and the public availability of these SNP assays will be of great value for the maize molecular genetics and breeding community.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas/genética , Marcadores Genéticos/genética , Genoma de Planta/genética , Polimorfismo de Nucleotídeo Único/genética , Zea mays/genética , Cruzamento , Primers do DNA , DNA de Plantas/genética , Ligação Genética , Genótipo , Reação em Cadeia da Polimerase
19.
Planta ; 231(6): 1439-58, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20352262

RESUMO

Transcription profiling analysis identified Saccharum hybrid DIRIGENT (SHDIR16) and Omicron-Methyltransferase (SHOMT), putative defense and fiber biosynthesis-related genes that are highly expressed in the stem of sugarcane, a major sucrose accumulator and biomass producer. Promoters (Pro) of these genes were isolated and fused to the beta-glucuronidase (GUS) reporter gene. Transient and stable transgene expression analyses showed that both Pro( DIR16 ):GUS and Pro( OMT ):GUS retain the expression characteristics of their respective endogenous genes in sugarcane and function in orthologous monocot species, including rice, maize and sorghum. Furthermore, both promoters conferred stem-regulated expression, which was further enhanced in the stem and induced in the leaf and root by salicylic acid, jasmonic acid and methyl jasmonate, key regulators of biotic and abiotic stresses. Pro( DIR16 ) and Pro( OMT ) will enable functional gene analysis in monocots, and will facilitate engineering monocots for improved carbon metabolism, enhanced stress tolerance and bioenergy production.


Assuntos
Regulação da Expressão Gênica de Plantas , Metiltransferases/genética , Proteínas de Plantas/genética , Caules de Planta/genética , Regiões Promotoras Genéticas , Saccharum/enzimologia , Saccharum/genética , Acetatos/farmacologia , Sequência de Aminoácidos , Sequência de Bases , Ciclopentanos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Glucuronidase/metabolismo , Lignina/metabolismo , Dados de Sequência Molecular , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Oryza/anatomia & histologia , Oryza/citologia , Oryza/efeitos dos fármacos , Oryza/genética , Oxilipinas/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Caules de Planta/citologia , Caules de Planta/efeitos dos fármacos , Plantas Geneticamente Modificadas , Saccharum/efeitos dos fármacos , Ácido Salicílico/farmacologia , Alinhamento de Sequência , Sorghum/efeitos dos fármacos , Sorghum/genética , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Zea mays/efeitos dos fármacos , Zea mays/genética
20.
Int J Plant Genomics ; 2009: 765367, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20148085

RESUMO

High-throughput functional genomic procedures depend on the quality of the RNA used. Copurifying molecules can negatively impact the functionality of some plant RNA preparations employed in these procedures. We present a simplified, rapid, and scalable SDS/phenol-based method that provides the high-quantity and -quality RNA required by the newly emerging biotechnology applications. The method is applied to isolating RNA from tissues of two biotechnologically important crop plants, sugarcane and citrus, which provide a challenge due to the presence of fiber, polysaccharides, or secondary metabolites. The RNA isolated by this method is suitable for several downstream applications including northern blot hybridization, microarray analysis, and quantitative RT-PCR. This method has been used in a diverse range of projects ranging from screening plant lines overexpressing mammalian genes to analyzing plant responses to viral infection and defense signaling molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...