Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Physiol ; 234(11): 19121-19129, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30941770

RESUMO

Damage-associated molecular patterns, including mitochondrial DNA (mtDNA) are released during hemorrhage resulting in the development of endotheliopathy. Tranexamic acid (TXA), an antifibrinolytic drug used in hemorrhaging patients, enhances their survival despite the lack of a comprehensive understanding of its cellular mechanisms of action. The present study is aimed to elucidate these mechanisms, with a focus on mitochondria. We found that TXA inhibits the release of endogenous mtDNA from granulocytes and endothelial cells. Furthermore, TXA attenuates the loss of the endothelial monolayer integrity induced by exogenous mtDNA. Using the Seahorse XF technology, it was demonstrated that TXA strongly stimulates mitochondrial respiration. Studies using Mitotracker dye, cells derived from mito-QC mice, and the ActivSignal IPAD assay, indicate that TXA stimulates biogenesis of mitochondria and inhibits mitophagy. These findings open the potential for improvement of the strategies of TXA applications in trauma patients and the development of more efficient TXA derivatives.


Assuntos
DNA Mitocondrial/efeitos dos fármacos , Hemorragia/tratamento farmacológico , Ácido Tranexâmico/farmacologia , Ferimentos e Lesões/tratamento farmacológico , Animais , Dano ao DNA/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Granulócitos/efeitos dos fármacos , Hemorragia/genética , Hemorragia/patologia , Humanos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Ferimentos e Lesões/genética , Ferimentos e Lesões/patologia
2.
J Trauma Acute Care Surg ; 86(4): 617-624, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30589751

RESUMO

BACKGROUND: Severe burn injuries are known to initiate a profound systemic inflammatory response (SIRS) that may lead to burn shock and other SIRS-related complications. Damage-associated molecular patterns (DAMPs) are important early signaling molecules that initiate SIRS after burn injury. Previous work in a rodent model has shown that application of a topical immune modulator (p38MAPK inhibitor) applied directly to the burn wound decreases cytokine expression, reduces pulmonary inflammation and edema. Our group has demonstrated that tranexamic acid (TXA)-in addition to its use as an antifibrinolytic-has cell protective in vitro effects. We hypothesized that administration of TXA after burn injury would attenuate DAMP release and reduce lung inflammation. METHODS: C57/BL6 male mice underwent a 40% Total Body Surface Area (TBSA) scald burn. Sham animals underwent the same procedure in room temperature water. One treatment group received the topical application of p38MAPK inhibitor after burn injury. The other treatment group received an intraperitoneal administration of TXA after burn injury. Animals were sacrificed at 5 hours. Plasma was collected by cardiac puncture. MtDNA levels in plasma were determined by quantitative Polymerase Chain Reaction (qPCR). Syndecan-1 levels in plasma were measured by ELISA. Lungs were harvested, fixed, and paraffin-embedded. Sections of lungs were stained for antigen to detect macrophages. RESULTS: Topical p38MAPK inhibitor and TXA significantly attenuated mtDNA release. Both TXA and the topical p38MAPK inhibitor reduced lung inflammation as represented by decreased macrophage infiltration. Syndecan-1 levels showed no difference between burn and treatment groups. CONCLUSION: Both p38 MAPK inhibitor and TXA demonstrated the ability to attenuate burn-induced DAMP release and lung inflammation. Beyond its role as an antifibrinolytic, TXA may have significant anti-inflammatory effects pertinent to burn resuscitation. Further study is required; however, TXA may be a useful adjunct in burn resuscitation.


Assuntos
Alarminas/efeitos dos fármacos , Queimaduras/tratamento farmacológico , Queimaduras/fisiopatologia , Modelos Animais de Doenças , Mitocôndrias/efeitos dos fármacos , Pneumonia/tratamento farmacológico , Ácido Tranexâmico/farmacologia , Administração Tópica , Animais , DNA Mitocondrial/antagonistas & inibidores , DNA Mitocondrial/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...