Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 231(Pt 1): 237-251, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28802993

RESUMO

Gentle remediation options (GRO) are based on the combined use of plants, associated microorganisms and soil amendments, which can potentially restore soil functions and quality. We studied the effects of three GRO (aided-phytostabilisation, in situ stabilisation and phytoexclusion, and aided-phytoextraction) on the soil microbial biomass and respiration, the activities of hydrolase enzymes involved in the biogeochemical cycles of C, N, P, and S, and bacterial community structure of trace element contaminated soils (TECS) from six field trials across Europe. Community structure was studied using denaturing gradient gel electrophoresis (DGGE) fingerprinting of Bacteria, α- and ß-Proteobacteria, Actinobacteria and Streptomycetaceae, and sequencing of DGGE bands characteristic of specific treatments. The number of copies of genes involved in ammonia oxidation and denitrification were determined by qPCR. Phytomanagement increased soil microbial biomass at three sites and respiration at the Biogeco site (France). Enzyme activities were consistently higher in treated soils compared to untreated soils at the Biogeco site. At this site, microbial biomass increased from 696 to 2352 mg ATP kg-1 soil, respiration increased from 7.4 to 40.1 mg C-CO2 kg-1 soil d-1, and enzyme activities were 2-11-fold higher in treated soils compared to untreated soil. Phytomanagement induced shifts in the bacterial community structure at both, the total community and functional group levels, and generally increased the number of copies of genes involved in the N cycle (nirK, nirS, nosZ, and amoA). The influence of the main soil physico-chemical properties and trace element availability were assessed and eventual site-specific effects elucidated. Overall, our results demonstrate that phytomanagement of TECS influences soil biological activity in the long term.


Assuntos
Biodegradação Ambiental , Microbiologia do Solo , Poluentes do Solo/análise , Oligoelementos/análise , Bactérias/efeitos dos fármacos , Betaproteobacteria , Biomassa , Eletroforese em Gel de Gradiente Desnaturante , Europa (Continente) , França , Plantas , Solo/química , Poluentes do Solo/toxicidade , Oligoelementos/toxicidade
2.
Int J Phytoremediation ; 19(10): 947-954, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28323452

RESUMO

A questionnaire survey was carried out in four European countries to gather end-user's perceptions of using plants from phytotechnologies in combustion and anaerobic digestion (AD). Nine actors of the wood energy sector from France, Germany, and Sweden, and eleven AD platform operators from France, Germany, and Austria were interviewed. Questions related to installation, input materials, performed analyses, phytostabilization, and phytoextraction were asked. Although the majority of respondents did not know phytotechnologies, results suggested that plant biomass from phytomanaged areas could be used in AD and combustion, under certain conditions. As a potential benefit, phytomanaged plants would not compete with plants grown on agricultural lands, contaminated lands being not suitable for agriculture production. Main limitations would be related to additional controls in process' inputs and end-products and installations that might generate additional costs. In most cases, the price of phytotechnologies biomass was mentioned as a driver to potentially use plants from metal-contaminated soils. Plants used in phytostabilization or phytoexclusion were thought to be less risky and, consequently, benefited from a better theoretical acceptance than those issued from phytoextraction. Results were discussed according to national regulations. One issue was related to the regulatory gap concerning the status of the plant biomass produced on contaminated land.


Assuntos
Biodegradação Ambiental , Plantas , Poluentes do Solo , Biomassa , França , Alemanha , Solo , Suécia
3.
Environ Sci Process Impacts ; 18(1): 11-21, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26701627

RESUMO

Increase of energy recovery from municipal solid waste by incineration results in the increased amounts of incineration residues, such as fly ash, that have to be taken care of. Material properties should define whether fly ash is a waste or a viable resource to be used for various applications. Here, two areas of potential fly ash application are reviewed: the use of fly ash in a landfill top cover either as a liner material or as a soil amendment in vegetation layer. Fly ashes from incineration of three types of fuel are considered: refuse derived fuel (RDF), municipal solid waste incineration (MSWI) and biofuel. Based on the observations, RDF and MSWI fly ash is considered as suitable materials to be used in a landfill top cover liner. Whereas MSWI and biofuel fly ashes based on element availability for plant studies, could be considered suitable for the vegetation layer of the top cover. Responsible application of MSWI ashes is, however, warranted in order to avoid element accumulation in soil and elevation of background values over time.


Assuntos
Gerenciamento de Resíduos/métodos , Incineração , Eliminação de Resíduos , Instalações de Eliminação de Resíduos
4.
Environ Sci Pollut Res Int ; 22(23): 19101-11, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26233740

RESUMO

The aim of this study was to evaluate the stabilization/solidification (S/S) of trace element-contaminated soil using air pollution control residues (APCRs) prior to disposal in landfill sites. Two soil samples (with low and moderate concentrations of organic matter) were stabilized using three APCRs that originated from the incineration of municipal solid waste, bio-fuels and a mixture of coal and crushed olive kernels. Two APCR/soil mixtures were tested: 30% APCR/70% soil and 50% APCR/50% soil. A batch leaching test was used to study immobilization of As and co-occurring metals Cr, Cu, Pb and Zn. Solidification was evaluated by measuring the unconfined compression strength (UCS). Leaching of As was reduced by 39-93% in APCR/soil mixtures and decreased with increased amounts of added APCR. Immobilization of As positively correlated with the amount of Ca in the APCR and negatively with the amount of soil organic matter. According to geochemical modelling, the precipitation of calcium arsenate (Ca3(AsO4)2/4H2O) and incorporation of As in ettringite (Ca6Al2(SO4)3(OH)12 · 26H2O) in soil/APCR mixtures might explain the reduced leaching of As. A negative effect of the treatment was an increased leaching of Cu, Cr and dissolved organic carbon. Solidification of APCR/soil was considerably weakened by soil organic matter.


Assuntos
Arseniatos/isolamento & purificação , Compostos de Cálcio/isolamento & purificação , Metais Pesados/isolamento & purificação , Poluentes do Solo/isolamento & purificação , Arseniatos/química , Compostos de Cálcio/química , Cinza de Carvão/química , Poluição Ambiental/análise , Incineração , Metais Pesados/química , Solo/química , Poluentes do Solo/química
5.
Chemosphere ; 138: 469-77, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26183942

RESUMO

We studied the microbial functional diversity, biochemical activity, heavy metals (HM) availability and soil toxicity of Cd, Pb and Zn contaminated soils, kept under grassland or short rotation coppice (SRC) to attenuate the risks associated with HM contamination and restore the soil ecological functions. Soil microbial functional diversity was analyzed by the GeoChip, a functional gene microarray containing probes for genes involved in nutrient cycling, metal resistance and stress response. Soil under SRC showed a higher abundance of microbial genes involved in C, N, P and S cycles and resistance to various HM, higher microbial biomass, respiration and enzyme activity rates, and lower HM availability than the grassland soil. The linkages between functional genes of soil microbial communities and soil chemical properties, HM availability and biochemical activity were also investigated. Soil toxicity and N, P and Pb availability were important factors in shaping the microbial functional diversity, as determined by CCA. We concluded that in HM contaminated soils the microbial functional diversity was positively influenced by SRC management through the reduction of HM availability and soil toxicity increase of nutrient cycling. The presented results can be important in predicting the long term environmental sustainability of plant-based soil remediation.


Assuntos
Variação Genética , Metais Pesados/metabolismo , Rotação , Salix/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Solo/química , Biodegradação Ambiental , Biomassa , Metais Pesados/isolamento & purificação , Poluentes do Solo/isolamento & purificação
6.
J Environ Manage ; 151: 1-10, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25528268

RESUMO

The aim of this study was to investigate the stability of As, Cr and Cu in contaminated soil treated with air pollution control residues under landfill conditions. The influence of landfill gas and temperature on the release of trace elements from stabilized soil was simulated using a diffusion test. The air pollution control residues immobilized As through the precipitation of Ca-As minerals (calcium arsenate (Ca5H2(AsO4)3 × 5H2O), weilite (CaAsO4) and johnbaumite (Ca5(AsO4)3(OH)), incorporation of As into ettringite (Ca6Al2(SO4)3(OH)12 × 26H2O) and adsorption by calcite (CaCO3). The air pollution control residues generally showed a high resistance to pH reduction, indicating high buffer capacity and stability of immobilized As in a landfill over time. Generation of heat in a landfill might increase the release of trace elements. The release of As from stabilized soil was diffusion-controlled at 60 °C, while surface wash-off, dissolution, and depletion prevailed at 20 °C. The air pollution control residues from the incineration of municipal solid waste immobilized Cr, indicating its stability in a landfill. The treatment of soil with air pollution control residues was not effective in immobilization of Cu. Contaminated soils treated with air pollution control residues will probably have a low impact on overall leachate quality from a landfill.


Assuntos
Poluição do Ar/prevenção & controle , Metais Pesados/química , Solo/química , Arsênio/química , Cromo/química , Cobre/química , Poluição Ambiental , Humanos , Incineração , Eliminação de Resíduos , Instalações de Eliminação de Resíduos
7.
Ecotoxicol Environ Saf ; 72(1): 115-119, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18692241

RESUMO

We conducted a pilot-scale experiment to study the effects of an aided phytostabilisation on soil microbial and biological endpoints in an ore dust-contaminated soil. Soil was amended with alkaline fly ashes plus peat to reduce mobility of trace elements and vegetated with a proprietary grass/herb mixture. Results indicated that the proposed aided phytostabilization approach of Cu-Pb contaminaed soil significantly increased microbial biomass and respiration, reduced microbial stress and increased key soil enzyme activities. Further research is needed to unambiguously determine whether the soil biochemical endpoints that were studied responded more to decreased metal mobility or to general soil amelioration.


Assuntos
Cobre/toxicidade , Enzimas/metabolismo , Chumbo/toxicidade , Poluentes do Solo/toxicidade , Solo/análise , Biodegradação Ambiental , Biomassa , Monitoramento Ambiental , Poluição Ambiental , Concentração de Íons de Hidrogênio , Resíduos Industriais , Consumo de Oxigênio , Projetos Piloto , Microbiologia do Solo , Oligoelementos/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...